165 research outputs found

    Academia’s Role to Drive Change in the Orthotics and Prosthetics Profession

    Get PDF
    This position paper outlines the important role of academia in shaping the orthotics and prosthetics (O&P) profession and preparing for its future. In the United States, most healthcare professions including O&P are under intense pressure to provide cost effective treatments and quantifiable health outcomes. Pivotal changes are needed in the way O&P services are provided to remain competitive. This will require the integration of new technologies and data driven processes that have the potential to streamline workflows, reduce errors and inform new methods of clinical care and device manufacturing. Academia can lead this change, starting with a restructuring in academic program curricula that will enable the next generation of professionals to cope with multiple demands such as the provision of services for an increasing number of patients by a relatively small workforce of certified practitioners delivering these services at a reduced cost, with the expectation of significant, meaningful, and measurable value. Key curricular changes will require replacing traditional labor-intensive and inefficient fabrication methods with the integration of newer technologies (i.e., digital shape capture, digital modeling/rectification and additive manufacturing). Improving manufacturing efficiencies will allow greater curricular emphasis on clinical training and education - an area that has traditionally been underemphasized. Providing more curricular emphasis on holistic patient care approaches that utilize systematic and evidence-based methods in patient assessment, treatment planning, dosage of O&P technology use, and measurement of patient outcomes is imminent. Strengthening O&P professionals\u27 clinical decision-making skills and decreasing labor-intensive technical fabrication aspects of the curriculum will be critical in moving toward a digital and technology-centric practice model that will enable future practitioners to adapt and survive

    Academia’s Role to Drive Change in the Orthotics and Prosthetics Profession

    Get PDF
    This position paper outlines the important role of academia in shaping the orthotics and prosthetics (O&P) profession and preparing for its future. In the United States, most healthcare professions including O&P are under intense pressure to provide cost effective treatments and quantifiable health outcomes. Pivotal changes are needed in the way O&P services are provided to remain competitive. This will require the integration of new technologies and data driven processes that have the potential to streamline workflows, reduce errors and inform new methods of clinical care and device manufacturing. Academia can lead this change, starting with a restructuring in academic program curricula that will enable the next generation of professionals to cope with multiple demands such as the provision of services for an increasing number of patients by a relatively small workforce of certified practitioners delivering these services at a reduced cost, with the expectation of significant, meaningful, and measurable value. Key curricular changes will require replacing traditional labor-intensive and inefficient fabrication methods with the integration of newer technologies (i.e., digital shape capture, digital modeling/rectification and additive manufacturing). Improving manufacturing efficiencies will allow greater curricular emphasis on clinical training and education - an area that has traditionally been underemphasized. Providing more curricular emphasis on holistic patient care approaches that utilize systematic and evidence-based methods in patient assessment, treatment planning, dosage of O&P technology use, and measurement of patient outcomes is imminent. Strengthening O&P professionals\u27 clinical decision-making skills and decreasing labor-intensive technical fabrication aspects of the curriculum will be critical in moving toward a digital and technology-centric practice model that will enable future practitioners to adapt and survive

    Submicron plasticity: yield stress, dislocation avalanches, and velocity distribution

    Full text link
    The existence of a well defined yield stress, where a macroscopic piece of crystal begins to plastically flow, has been one of the basic observations of materials science. In contrast to macroscopic samples, in micro- and nanocrystals the strain accumulates in distinct, unpredictable bursts, which makes controlled plastic forming rather difficult. Here we study by simulation, in two and three dimensions, plastic deformation of submicron objects under increasing stress. We show that, while the stress-strain relation of individual samples exhibits jumps, its average and mean deviation still specify a well-defined critical stress, which we identify with the jamming-flowing transition. The statistical background of this phenomenon is analyzed through the velocity distribution of short dislocation segments, revealing a universal cubic decay and an appearance of a shoulder due to dislocation avalanches. Our results can help to understand the jamming-flowing transition exhibited by a series of various physical systems.Comment: 5 page

    Compact parity conserving percolation in one-dimension

    Full text link
    Compact directed percolation is known to appear at the endpoint of the directed percolation critical line of the Domany-Kinzel cellular automaton in 1+1 dimension. Equivalently, such transition occurs at zero temperature in a magnetic field H, upon changing the sign of H, in the one-dimensional Glauber-Ising model with well known exponents characterising spin-cluster growth. We have investigated here numerically these exponents in the non-equilibrium generalization (NEKIM) of the Glauber model in the vicinity of the parity-conserving phase transition point of the kinks. Critical fluctuations on the level of kinks are found to affect drastically the characteristic exponents of spreading of spins while the hyperscaling relation holds in its form appropriate for compact clusters.Comment: 7 pages, 7 figures embedded in the latex, final form before J.Phys.A publicatio

    Bound entangled singlet-like states for quantum metrology

    Get PDF
    Bipartite entangled quantum states with a positive partial transpose (PPT), i.e., PPT entangled states, are usually considered very weakly entangled. Since no pure entanglement can be distilled from them, they are also called bound entangled. In this paper we present two classes of (2d×2d2d\times 2d)-dimensional PPT entangled states for any d2d\ge 2 which outperform all separable states in metrology significantly. We present strong evidence that our states provide the maximal metrological gain achievable by PPT states for a given system size. When the dimension dd goes to infinity, the metrological gain of these states becomes maximal and equals the metrological gain of a pair of maximally entangled qubits. Thus, we argue that our states could be called "PPT singlets."Comment: 17 pages including 3 figures, revtex4.2; v2: presentation improved, some further results added, links to MATLAB programs generating the bound entangled states added; v3: published versio

    Crossovers from parity conserving to directed percolation universality

    Full text link
    The crossover behavior of various models exhibiting phase transition to absorbing phase with parity conserving class has been investigated by numerical simulations and cluster mean-field method. In case of models exhibiting Z_2 symmetric absorbing phases (the NEKIMCA and Grassberger's A stochastic cellular automaton) the introduction of an external symmetry breaking field causes a crossover to kink parity conserving models characterized by dynamical scaling of the directed percolation (DP) and the crossover exponent: 1/\phi ~ 0.53(2). In case an even offspringed branching and annihilating random walk model (dual to NEKIMCA) the introduction of spontaneous particle decay destroys the parity conservation and results in a crossover to the DP class characterized by the crossover exponent: 1/\phi\simeq 0.205(5). The two different kinds of crossover operators can't be mapped onto each other and the resulting models show a diversity within the DP universality class in one dimension. These 'sub-classes' differ in cluster scaling exponents.Comment: 6 pages, 6 figures, accepted version in PR

    Uncertainty relations with the variance and the quantum Fisher information based on convex decompositions of density matrices

    Get PDF
    We present several inequalities related to the Robertson-Schr\"odinger uncertainty relation. In all these inequalities, we consider a decomposition of the density matrix into a mixture of states, and use the fact that the Robertson-Schr\"odinger uncertainty relation is valid for all these components. By considering a convex roof of the bound, we obtain an alternative derivation of the relation in Fr\"owis et al. [Phys. Rev. A 92, 012102 (2015)], and we can also list a number of conditions that are needed to saturate the relation. We present a formulation of the Cram\'er-Rao bound involving the convex roof of the variance. By considering a concave roof of the bound in the Robertson-Schr\"odinger uncertainty relation over decompositions to mixed states, we obtain an improvement of the Robertson-Schr\"odinger uncertainty relation. We consider similar techniques for uncertainty relations with three variances. Finally, we present further uncertainty relations that provide lower bounds on the metrological usefulness of bipartite quantum states based on the variances of the canonical position and momentum operators for two-mode continuous variable systems. We show that the violation of well-known entanglement conditions in these systems discussed in Duan et al., [Phys. Rev. Lett. 84, 2722 (2000)] and Simon [Phys. Rev. Lett. 84, 2726 (2000)] implies that the state is more useful metrologically than certain relevant subsets of separable states. We present similar results concerning entanglement conditions with angular momentum operators for spin systems.Comment: 17 pages including 3 figures, revtex4.2. See also the related work S. H. Chiew and M. Gessner, Phys. Rev. Research 4, 013076 (2022

    Entanglement and Extreme Spin Squeezing for a Fluctuating Number of Indistinguishable Particles

    Full text link
    We extend the criteria for kk-particle entanglement from the spin squeezing parameter presented in [A.S. S{\o}rensen and K. M{\o}lmer, Phys. Rev. Lett. {\bf 86}, 4431 (2001)] to systems with a fluctating number of particles. We also discuss how other spin squeezing inequalities can be generalized to this situation. Further, we give an operational meaning to the bounds for cases where the individual particles cannot be addressed. As a by-product, this allows us to show that in spin squeezing experiments with cold gases the particles are typically distinguishable in practise. Our results justify the application of the S{\o}rensen-M{\o}lmer bounds in recent experiments on spin squeezing in Bose-Einstein condensates

    Correlated Initial Conditions in Directed Percolation

    Full text link
    We investigate the influence of correlated initial conditions on the temporal evolution of a (d+1)-dimensional critical directed percolation process. Generating initial states with correlations ~r^(sigma-d) we observe that the density of active sites in Monte-Carlo simulations evolves as rho(t)~t^kappa. The exponent kappa depends continuously on sigma and varies in the range -beta/nu_{||}<=kappa<=eta. Our numerical results are confirmed by an exact field-theoretical renormalization group calculation.Comment: 10 pages, RevTeX, including 5 encapsulated postscript figure

    HAT-P-5b: A Jupiter-like hot Jupiter Transiting a Bright Star

    Get PDF
    We report the discovery of a planet transiting a moderately bright (V = 12.00) G star, with an orbital period of 2.788491 +/-0.000025 days. From the transit light curve we determine that the radius of the planet is Rp = 1.257 +/- 0.053 RJup. HAT-P-5b has a mass of Mp = 1.06 +/- 0.11 MJup, similar to the average mass of previously-known transiting exoplanets, and a density of rho = 0.66 +/- 0.11 g cm^-3 . We find that the center of transit is Tc = 2,454,241.77663 +/- 0.00022 (HJD), and the total transit duration is 0.1217 +/- 0.0012 days.Comment: 5 pages, submitted to APJ
    corecore