9 research outputs found

    Restoring the balance between disease and repair in multiple sclerosis: insights from mouse models

    No full text
    Multiple sclerosis (MS) is considered an autoimmune-mediated demyelinating disease that targets the central nervous system (CNS). Despite considerable research efforts over multiple decades, our understanding of the basic biological processes that are targeted in the disease and the mechanisms of pathogenesis are poorly understood. Consequently, current therapies directed at controlling the progression of the disease are limited in their effectiveness. Historically, the primary focus of MS research has been to define the cellular and molecular basis of the immunological pathogenic mechanisms. Recently, however, it has become clear that long-term functional recovery in MS will require the development of strategies that facilitate myelin repair in lesion areas. The emerging evidence that the adult vertebrate CNS retains the capacity to regenerate neural cells that have been lost to disease or damage has provoked intensive research focused on defining the mechanisms of myelin repair. Unfortunately, the existing animal models of MS are poorly equipped to assess myelin repair, and new validated strategies to identify therapeutics targeted at promoting myelin repair are badly needed. This Commentary will review established murine models of MS, and discuss emerging technologies that promise to provide insights into the mechanisms of myelin repair

    Genome-wide demethylation promotes triplet repeat instability independently of homologous recombination

    No full text
    Trinucleotide repeat instability is intrinsic to a family of human neurodegenerative diseases. The mechanism leading to repeat length variation is unclear. We previously showed that treatment with the demethylating agent 5-aza-2′-deoxycytidine (5-aza-CdR) dramatically increases triplet repeat instability in mammalian cells. Based on previous reports that demethylation increases homologous recombination (HR), and our own observations that HR destabilizes triplet repeats, we hypothesized that demethylation alters repeat stability by stimulating HR. Here, we test that hypothesis at the adenosine phosphoribosyl transferase (Aprt) locus in CHO cells, where CpG demethylation and HR have both been shown to increase CAG repeat instability. We find that the rate of HR at the Aprt locus is not altered by demethylation. The spectrum of recombinants, however, was shifted from the usual 6:1 ratio of conversions to crossovers to more equal proportions in 5-aza-CdR-treated cells. The subtle influences of demethylation on HR at the Aprt locus are not sufficient to account for its dramatic effects on repeat instability. We conclude that 5-aza-CdR promotes triplet repeat instability independently of HR

    Astrocytes Are Required for Oligodendrocyte Survival and Maintenance of Myelin Compaction and Integrity

    No full text
    Astrocytes have been implicated in regulating oligodendrocyte development and myelination in vitro, although their functions in vivo remain less well defined. Using a novel approach to locally ablate GFAP+ astrocytes, we demonstrate that astrocytes are required for normal CNS myelin compaction during development, and for maintaining myelin integrity in the adult. Transient ablation of GFAP+ astrocytes in the mouse spinal cord during the first postnatal week reduced the numbers of mature oligodendrocytes and inhibited myelin formation, while prolonged ablation resulted in myelin that lacked compaction and structural integrity. Ablation of GFAP+ astrocytes in the adult spinal cord resulted in the rapid, local loss of myelin integrity and regional demyelination. The loss of myelin integrity induced by astrocyte ablation was greatly reduced by NMDA receptor antagonists, both in vitro and in vivo, suggesting that myelin stability was affected by elevation of local glutamate levels following astrocyte ablation. Furthermore, targeted delivery of glutamate into adult spinal cord white matter resulted in reduction of myelin basic protein expression and localized disruption of myelin compaction which was also reduced by NMDA receptor blockade. The pathology induced by localized astrocyte loss and elevated exogenous glutamate, supports the concept that astrocytes are critical for maintenance of myelin integrity in the adult CNS and may be primary targets in the initiation of demyelinating diseases of the CNS, such as Neuromyelitis Optica (NMO)

    A partial loss of function allele of Methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome

    No full text
    Rett Syndrome, an X-linked dominant neurodevelopmental disorder characterized by regression of language and hand use, is primarily caused by mutations in methyl-CpG-binding protein 2 (MECP2). Loss of function mutations in MECP2 are also found in other neurodevelopmental disorders such as autism, Angelman-like syndrome and non-specific mental retardation. Furthermore, duplication of the MECP2 genomic region results in mental retardation with speech and social problems. The common features of human neurodevelopmental disorders caused by the loss or increase of MeCP2 function suggest that even modest alterations of MeCP2 protein levels result in neurodevelopmental problems. To determine whether a small reduction in MeCP2 level has phenotypic consequences, we characterized a conditional mouse allele of Mecp2 that expresses 50% of the wild-type level of MeCP2. Upon careful behavioral analysis, mice that harbor this allele display a spectrum of abnormalities such as learning and motor deficits, decreased anxiety, altered social behavior and nest building, decreased pain recognition and disrupted breathing patterns. These results indicate that precise control of MeCP2 is critical for normal behavior and predict that human neurodevelopmental disorders will result from a subtle reduction in MeCP2 expression
    corecore