295 research outputs found

    Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling

    Get PDF
    Tissue progenitor cells are an attractive target for regenerative therapy. In various organs, bone marrow cell (BMC) therapy has shown promising preliminary results, but to date no definite mechanism has been demonstrated to account for the observed benefit in organ regeneration. Tissue injury and regeneration is invariably accompanied by macrophage infiltration, but their influence upon the progenitor cells is incompletely understood, and direct signaling pathways may be obscured by the multiple roles of macrophages during organ injury. We therefore examined a model without injury; a single i.v. injection of unfractionated BMCs in healthy mice. This induced ductular reactions (DRs) in healthy mice. We demonstrate that macrophages within the unfractionated BMCs are responsible for the production of DRs, engrafting in the recipient liver and localizing to the DRs. Engrafted macrophages produce the cytokine TWEAK (TNF-like weak inducer of apoptosis) in situ. We go on to show that recombinant TWEAK activates DRs and that BMC mediated DRs are TWEAK dependent. DRs are accompanied by liver growth, occur in the absence of liver tissue injury and hepatic progenitor cells can be isolated from the livers of mice with DRs. Overall these results reveal a hitherto undescribed mechanism linking macrophage infiltration to DRs in the liver and highlight a rationale for macrophage derived cell therapy in regenerative medicine

    Histone H3 Localizes to the Centromeric DNA in Budding Yeast

    Get PDF
    During cell division, segregation of sister chromatids to daughter cells is achieved by the poleward pulling force of microtubules, which attach to the chromatids by means of a multiprotein complex, the kinetochore. Kinetochores assemble at the centromeric DNA organized by specialized centromeric nucleosomes. In contrast to other eukaryotes, which typically have large repetitive centromeric regions, budding yeast CEN DNA is defined by a 125 bp sequence and assembles a single centromeric nucleosome. In budding yeast, as well as in other eukaryotes, the Cse4 histone variant (known in vertebrates as CENP-A) is believed to substitute for histone H3 at the centromeric nucleosome. However, the exact composition of the CEN nucleosome remains a subject of debate. We report the use of a novel ChIP approach to reveal the composition of the centromeric nucleosome and its localization on CEN DNA in budding yeast. Surprisingly, we observed a strong interaction of H3, as well as Cse4, H4, H2A, and H2B, but not histone chaperone Scm3 (HJURP in human) with the centromeric DNA. H3 localizes to centromeric DNA at all stages of the cell cycle. Using a sequential ChIP approach, we could demonstrate the co-occupancy of H3 and Cse4 at the CEN DNA. Our results favor a H3-Cse4 heterotypic octamer at the budding yeast centromere. Whether or not our model is correct, any future model will have to account for the stable association of histone H3 with the centromeric DNA

    sox9b Is a Key Regulator of Pancreaticobiliary Ductal System Development

    Get PDF
    The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9bfh313, to dissect its function in the morphogenesis of this structure. Strikingly, sox9bfh313 homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9bfh313 mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9bfh313 mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9bfh313 mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene for pancreaticobiliary duct malformation-related pathologies

    A systematic study on Pt based, subnanometer-sized alloy cluster catalysts for alkane dehydrogenation: effects of intermetallic interaction

    Get PDF
    Platinum-based bimetallic nanoparticles are analyzed by the application of density functional theory to a series of tetrahedral Pt3X cluster models, with element X taken from the P-block, preferably group 14, or from the D-block around group 10. Almost identical cluster geometries allow a systematic investigation of electronic effects induced by different elements X. Choosing the propane-to-propene conversion as the desired dehydrogenation reaction, we provide estimates for the activity and selectivity of the various catalysts based on transition state theory. No significant BrΓΈnsted-Evans-Polanyi-relation could be found for the given reaction. A new descriptor, derived from an energy decomposition analysis, captures the effect of element X on the rate-determining step of the first hydrogen abstraction. Higher activities than obtained for pure Pt4 clusters are predicted for Pt alloys containing Ir, Sn, Ge and Si, with Pt3Ir showing particularly high selectivity

    Reactive Oxygen Species Suppress Cardiac NaV1.5 Expression through Foxo1

    Get PDF
    NaV1.5 is a cardiac voltage-gated Na+ channel Ξ±subunit and is encoded by the SCN5a gene. The activity of this channel determines cardiac depolarization and electrical conduction. Channel defects, including mutations and decrease of channel protein levels, have been linked to the development of cardiac arrhythmias. The molecular mechanisms underlying the regulation of NaV1.5 expression are largely unknown. Forkhead box O (Foxo) proteins are transcriptional factors that bind the consensus DNA sequences in their target gene promoters and regulate the expression of these genes. Comparative analysis revealed conserved DNA sequences, 5β€²-CAAAACA-3β€² (insulin responsive element, IRE), in rat, mouse and human SCN5a promoters with the latter two containing two overlapping Foxo protein binding IREs, 5β€²-CAAAACAAAACA-3β€². This finding led us to hypothesize that Foxo1 regulates NaV1.5 expression by directly binding the SCN5a promoter and affecting its transcriptional activity. In the present study, we determined whether Foxo1 regulates NaV1.5 expression at the transcriptional level and also defined the role of Foxo1 in hydrogen peroxide (H2O2)-mediated NaV1.5 suppression in HL-1 cardiomyocytes using chromatin immunoprecipitation (ChIP), constitutively nuclear Foxo1 expression, and RNAi Foxo1 knockdown as well as whole cell voltage-clamp recordings. ChIP with anti-Foxo1 antibody and follow-up semi-quantitative PCR with primers flanking Foxo1 binding sites in the proximal SCN5a promoter region clearly demonstrated enrichment of DNA, confirming Foxo1 recruitment to this consensus sequence. Foxo1 mutant (T24A/S319A-GFP, Foxo1-AA-GFP) was retained in nuclei, leading to a decrease of NaV1.5 expression and Na+ current, while silencing of Foxo1 expression by RNAi resulted in the augmentation of NaV1.5 expression. H2O2 significantly reduced NaV1.5 expression by promoting Foxo1 nuclear localization and this reduction was prevented by RNAi silencing Foxo1 expression. These studies indicate that Foxo1 negatively regulates NaV1.5 expression in cardiomyocytes and reactive oxygen species suppress NaV1.5 expression through Foxo1

    A two-step mechanism for epigenetic specification of centromere identity and function

    Get PDF
    The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either the amino- or carboxy-terminal tail of CENP-A for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively.National Institutes of Health grant: (GM 074150); Ludwig Institute for Cancer Research; European Molecular Biology Organization (EMBO) long-term fellowship

    Gene Expression of the Tumour Suppressor LKB1 Is Mediated by Sp1, NF-Y and FOXO Transcription Factors

    Get PDF
    The serine/threonine kinase LKB1 is a tumour suppressor that regulates multiple biological pathways, including cell cycle control, cell polarity and energy metabolism by direct phosphorylation of 14 different AMP-activated protein kinase (AMPK) family members. Although many downstream targets have been described, the regulation of LKB1 gene expression is still poorly understood. In this study, we performed a functional analysis of the human LKB1 upstream regulatory region. We used 200 base pair deletion constructs of the 5β€²-flanking region fused to a luciferase reporter to identify the core promoter. It encompasses nucleotides βˆ’345 to +52 relative to the transcription start site and coincides with a DNase I hypersensitive site. Based on extensive deletion and substitution mutant analysis of the LKB1 promoter, we identified four cis-acting elements which are critical for transcriptional activation. Using electrophoretic mobility shift assays as well as chromatin immunoprecipitations, we demonstrate that the transcription factors Sp1, NF-Y and two forkhead box O (FOXO) family members FOXO3 and FOXO4 bind to these elements. Overexpression of these factors significantly increased the LKB1 promoter activity. Conversely, small interfering RNAs directed against NF-Y alpha and the two FOXO proteins greatly reduced endogenous LKB1 expression and phosphorylation of LKB1's main substrate AMPK in three different cell lines. Taken together, these results demonstrate that Sp1, NF-Y and FOXO transcription factors are involved in the regulation of LKB1 transcription

    Epigenetic regulation of centromeric chromatin: old dogs, new tricks?

    Get PDF
    The assembly of just a single kinetochore at the centromere of each sister chromatid is essential for accurate chromosome segregation during cell division. Surprisingly, despite their vital function, centromeres show considerable plasticity with respect to their chromosomal locations and activity. The establishment and maintenance of centromeric chromatin, and therefore the location of kinetochores, is epigenetically regulated. The histone H3 variant CENP-A is the key determinant of centromere identity and kinetochore assembly. Recent studies have identified many factors that affect CENP-A localization, but their precise roles in this process are unknown. We build on these advances and on new information about the timing of CENP-A assembly during the cell cycle to propose new models for how centromeric chromatin is established and propagated
    • …
    corecore