37 research outputs found

    Divergence in cis-regulatory networks: taking the 'species' out of cross-species analysis

    Get PDF
    Significant differences between species in genomic occupancy of conserved transcription factors are mostly due to species-specificity of cis-regulatory sequences

    Identification of tightly regulated groups of genes during Drosophila melanogaster embryogenesis

    Get PDF
    Time-series analysis of whole-genome expression data during Drosophila melanogaster development indicates that up to 86% of its genes change their relative transcript level during embryogenesis. By applying conservative filtering criteria and requiring ‘sharp' transcript changes, we identified 1534 maternal genes, 792 transient zygotic genes, and 1053 genes whose transcript levels increase during embryogenesis. Each of these three categories is dominated by groups of genes where all transcript levels increase and/or decrease at similar times, suggesting a common mode of regulation. For example, 34% of the transiently expressed genes fall into three groups, with increased transcript levels between 2.5–12, 11–20, and 15–20 h of development, respectively. We highlight common and distinctive functional features of these expression groups and identify a coupling between downregulation of transcript levels and targeted protein degradation. By mapping the groups to the protein network, we also predict and experimentally confirm new functional associations

    Network analysis of the multidimensional symptom experience of oncology

    Get PDF
    Oncology patients undergoing cancer treatment experience an average of fifteen unrelieved symptoms that are highly variable in both their severity and distress. Recent advances in Network Analysis (NA) provide a novel approach to gain insights into the complex nature of co-occurring symptoms and symptom clusters and identify core symptoms. We present findings from the first study that used NA to examine the relationships among 38 common symptoms in a large sample of oncology patients undergoing chemotherapy. Using two different models of Pairwise Markov Random Fields (PMRF), we examined the nature and structure of interactions for three different dimensions of patients’ symptom experience (i.e., occurrence, severity, distress). Findings from this study provide the first direct evidence that the connections between and among symptoms differ depending on the symptom dimension used to create the network. Based on an evaluation of the centrality indices, nausea appears to be a structurally important node in all three networks. Our findings can be used to guide the development of symptom management interventions based on the identification of core symptoms and symptom clusters within a network

    Proceedings of Patient Reported Outcome Measure’s (PROMs) Conference Oxford 2017: Advances in Patient Reported Outcomes Research

    Get PDF
    A33-Effects of Out-of-Pocket (OOP) Payments and Financial Distress on Quality of Life (QoL) of People with Parkinson’s (PwP) and their Carer

    Subtle changes in motif positioning cause tissue-specific effects on robustness of an enhancer's activity

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.Deciphering the specific contribution of individual motifs within cis-regulatory modules (CRMs) is crucial to understanding how gene expression is regulated and how this process is affected by sequence variation. But despite vast improvements in the ability to identify where transcription factors (TFs) bind throughout the genome, we are limited in our ability to relate information on motif occupancy to function from sequence alone. Here, we engineered 63 synthetic CRMs to systematically assess the relationship between variation in the content and spacing of motifs within CRMs to CRM activity during development using Drosophila transgenic embryos. In over half the cases, very simple elements containing only one or two types of TF binding motifs were capable of driving specific spatio-temporal patterns during development. Different motif organizations provide different degrees of robustness to enhancer activity, ranging from binary on-off responses to more subtle effects including embryo-to-embryo and within-embryo variation. By quantifying the effects of subtle changes in motif organization, we were able to model biophysical rules that explain CRM behavior and may contribute to the spatial positioning of CRM activity in vivo. For the same enhancer, the effects of small differences in motif positions varied in developmentally related tissues, suggesting that gene expression may be more susceptible to sequence variation in one tissue compared to another. This result has important implications for human eQTL studies in which many associated mutations are found in cis-regulatory regions, though the mechanism for how they affect tissue-specific gene expression is often not understood.This work was supported by grants from ERASysBio (ModHeart) http://www.erasysbio.net/ and DFG (FU 750/1-2) http://www.dfg.de/en/.Peer Reviewe

    Patterns of gene expression during Drosophila mesoderm development

    No full text
    The transcription factor Twist initiates Drosophila mesoderm development, resulting in the formation of heart, somatic muscle, and other cell types. Using a Drosophila embryo sorter, we isolated enough homozygous twist mutant embryos to perform DNA microarray experiments. Transcription profiles of twist loss-of-function embryos, embryos with ubiquitous twist expression, and wild-type embryos were compared at different developmental stages. The results implicate hundreds of genes, many with vertebrate homologs, in stagespecific processes in mesoderm development. One such gene, gleeful, related to the vertebrate Gli genes, is essential for somatic muscle development and sufficient to cause neural cells to express a muscle marker. Formation of muscles during embryonic development is a complex process that requires coordinate actions of many genes. Somatic, visceral, and heart muscle are all derived from mesoderm progenitor cells. The Drosophil

    Combinatorial binding leads to diverse regulatory responses:Lmd is a tissue-specific modulator of Mef2 activity

    Get PDF
    Understanding how complex patterns of temporal and spatial expression are regulated is central to deciphering genetic programs that drive development. Gene expression is initiated through the action of transcription factors and their cofactors converging on enhancer elements leading to a defined activity. Specific constellations of combinatorial occupancy are therefore often conceptualized as rigid binding codes that give rise to a common output of spatio-temporal expression. Here, we assessed this assumption using the regulatory input of two essential transcription factors within the Drosophila myogenic network. Mutations in either Myocyte enhancing factor 2 (Mef2) or the zinc-finger transcription factor lame duck (lmd) lead to very similar defects in myoblast fusion, yet the underlying molecular mechanism for this shared phenotype is not understood. Using a combination of ChIP-on-chip analysis and expression profiling of loss-of-function mutants, we obtained a global view of the regulatory input of both factors during development. The majority of Lmd-bound enhancers are co-bound by Mef2, representing a subset of Mef2's transcriptional input during these stages of development. Systematic analyses of the regulatory contribution of both factors demonstrate diverse regulatory roles, despite their co-occupancy of shared enhancer elements. These results indicate that Lmd is a tissue-specific modulator of Mef2 activity, acting as both a transcriptional activator and repressor, which has important implications for myogenesis. More generally, this study demonstrates considerable flexibility in the regulatory output of two factors, leading to additive, cooperative, and repressive modes of co-regulation
    corecore