14 research outputs found

    Thread-Traction with a Sheath of Polypectomy Snare Facilitates Endoscopic Submucosal Dissection of Early Gastric Cancers

    Get PDF
    Although the thread-traction (TT) method has been found useful during endoscopic submucosal dissection (ESD) for early gastric cancers, the movement of the thread interferes with the movement of the endoscope, and the lesion can only be pulled to the mouth side. We have developed the novel TT method using a sheath of polypectomy snare (TTSPS). The TTSPS method enables free and independent movement of the thread and the endoscope and allows pulling the lesion towards the anal as well as oral side. The median dissection times, numbers of instances of arterial bleeding, and numbers of local injections into the submucosal layer were significantly lower for ESD with TTSPS than for conventional ESD. Countertraction ESD using the TTSPS method is straightforward, safe, easy, noninvasive, and cost effective, and it uses instruments readily available in most hospitals to enhance visualization of cutting lines. Therefore, the TTSPS method can be universally applied in conventional ESD

    Overexpression of microRNA-155 suppresses chemokine expression induced by Interleukin-13 in BEAS-2B human bronchial epithelial cells

    Get PDF
    Background: MicroRNAs are non-coding small RNAs that regulate expression of target genes by binding to 3′ untranslated regions. In this study, we used bronchial epithelial cells to investigate in vitro the role of the microRNA miR-155 in the expression of chemokines associated with airway inflammation. miR-155 has previously been reported to regulate allergic inflammation. Methods: BEAS-2B bronchial epithelial cells were cultured and transfected with mimic or inhibitor oligonucleotides to overexpress or downregulate miR-155, as confirmed by real-time PCR. Cells were then stimulated with tumor necrosis factor-alpha, interleukin-13 (IL-13), and a double stranded RNA that binds Toll-like receptor 3. Expression and secretion of the chemokines CCL5, CCL11, CCL26, CXCL8, and CXCL10 were then quantified by real-time PCR and ELISA, respectively. Phosphorylation of signal transducer and activator of transcription 6 (STAT6), a target of the IL-13 receptor, was analyzed by ELISA. Results: miR-155 overexpression significantly suppressed IL-13-induced secretion of CCL11 and CCL26. These effects were specific, and were not observed for other chemokines, nor in cells with downregulated miR-155. miR-155 overexpression also suppressed CCL11 and CCL26 mRNA, but did not affect expression of the IL-13 receptor or phosphorylation of STAT6. Conclusions: miR-155 specifically inhibits IL-13-induced expression of eosinophilic chemokines CCL11 and CCL26 in bronchial epithelial cells, even though the 3'-untranslated region of these genes do not contain a consensus binding site for miR-155
    corecore