168 research outputs found

    Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered Escherichia coli strain

    Get PDF
    Biohydrogen is considered a promising and environmentally friendly energy source. Escherichia coli BW25113 hyaB hybC hycA fdoG frdc ldhA aceE has been previously engineered for elevated biohydrogen production from glucose. In this study, we show that this strain can also use biomass from oil palm frond (OPF) juice and sewage sludge as substrates. Substrate improvement was accomplished when hydrogen productivity increased 8-fold after enzymatic treatment of the sludge with a mixture of amylase and cellulase. The OPF juice with sewage sludge provided an optimum carbon/nitrogen ratio since the yield of biohydrogen increased to 1.5 from 1.3 mol H2/mol glucose compared to our previous study. In this study, we also reveal that our engineered strain improved 200-fold biohydrogen productivity from biomass sources compared to the unmodified host. In conclusion, we determined that our engineered strain can use biomass as an alternative substrate for enhanced biohydrogen production

    Hydrogen Bond Dynamics Near A Micellar Surface: Origin of the Universal Slow Relaxation at Complex Aqueous Interfaces

    Full text link
    The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than a hundred picosecond. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5kcal/mole.Comment: 12 pages. Phys. Rev. Lett. (Accepted) (2002

    Granulation and microbial community dynamics in the chitosan-supplemented anaerobic treatment of wastewater polluted with organic solvents

    Get PDF
    The effect of chitosan on the development of granular sludge in upflow anaerobic sludge blanket reactors (UASB) when treating wastewater polluted with the organic solvents ethanol, ethyl acetate, and 1-ethoxy-2-propanol was evaluated. Three UASB reactors were operated for 219 days at ambient temperature with an organic loading rate (OLR) of between 0.3 kg COD m−3 d−1 and 20 kg COD m−3 d−1. One reactor was operated without the addition of chitosan, while the other two were operated with the addition of chitosan doses of 2.4 mg gVSS−1 two times. The three reactors were all able to treat the OLR tested with COD removal efficiencies greater than 90%. However, the time required to reach stable operation was considerably reduced in the chitosan-assisted reactors. The development of granules in the reactors with chitosan was accelerated and granules larger than 2000 μm were only observed in these reactors. In addition, these granules exhibited better physicochemical characteristics: the mean particle diameter (540 and 613 μm) was approximately two times greater than in the control reactor (300 μm), and the settling velocities exceeded 35 m h−1. The extracellular polymeric substances (EPS) in the reactors with the chitosan was found to be higher than in the control reactor. The protein-EPS content has been correlated with the granule size. The analyses of the microbial communities, performed through denaturing gradient gel electrophoresis and high-throughput sequencing, revealed that the syntrophic microorganisms belonging to genus Geobacter and the hydrogenotrophic methanogen Methanocorpusculum labreanum were predominant in the granules. Other methanogens like Methanosaeta species were found earlier in the chitosan-assisted reactors than in the control reactor

    Trends in life science grid: from computing grid to knowledge grid

    Get PDF
    BACKGROUND: Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. RESULTS: This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. CONCLUSION: Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community

    Fluorescent characteristics of dissolved organic matter produced by bloom-forming coastal phytoplankton

    Get PDF
    Dynamics and sources of fluorescent dissolved organic matter (FDOM) are important for understanding biogeochemical processes in aquatic ecosystems. This study aimed to analyse direct production of FDOM by marine phytoplankton cultures and reveal fluorescent characteristics of exuded FDOM. Axenic cultures of eight species of bloom-forming marine phytoplankton, including two diatoms; a raphidophyte; two dinoflagellates; a chlorophyte; a cryptophyte and a haptophyte, were incubated in an artificial medium. Excitation emission matrices (EEMs) of FDOM in the culture medium were spectrofluorometrically measured. FDOM production was observed in all species, and fluorescent characteristics of the exudates varied considerably among species. Measured EEMs had peaks at 350/450 nm (excitation/emission) for the diatom Ditylum brightwellii and 370/450–470 nm for the raphidophyte Heterosigma akashiwo and the chlorophyte Oltmansiellopsis viridis, which have previously been regarded as the peaks of terrestrially derived humic-like substances. Direct production of FDOM by marine phytoplankton should be considered in future studies of FDOM dynamics in marine systems. Species-specific features of FDOM might be used for early detection of harmful blooms because this method is simple, rapid and suitable for monitoring
    corecore