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 10 

Abstract 11 

Dynamics and sources of fluorescent dissolved organic matter (FDOM) are important 12 

for understanding the biogeochemical process in aquatic ecosystems. This study aimed 13 

to analyse direct production of FDOM by marine phytoplankton cultures and reveal 14 

fluorescent characteristics of exuded FDOM. Axenic cultures of eight species of 15 

bloom-forming marine phytoplankton, including two diatoms; a raphidophyte; two 16 

dinoflagellates; a chlorophyte; a cryptophyte and a haptophyte, were incubated in an 17 

artificial medium. Excitation emission matrices (EEMs) of FDOM in the culture 18 
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medium were spectrofluorometrically measured. FDOM production was observed in all 1 

species, and fluorescent characteristics of the exudates varied considerably among 2 

species. Measured EEMs had peaks at 350 nm/450 nm (excitation/emission) for the 3 

diatom Ditylum brightwellii and 370 nm/450–470 nm for the raphidophyte Heterosigma 4 

akashiwo and the chlorophyte Oltmansiellopsis viridis, which were previously regarded 5 

as the peaks of terrestrially derived humic-like substances. Direct production of FDOM 6 

by marine phytoplankton should be considered in future studies of FDOM dynamics in 7 

marine systems. Species-specific features of FDOM might be used for early detection of 8 

noxious bloom because this method is simple, rapid, and suitable for monitoring.  9 

 10 

Introduction 11 

 12 

Marine dissolved organic matter (DOM) is one of the major factors affecting the 13 

global carbon cycles and is the largest ocean reservoir of reduced carbon (Hansell et al., 14 

2009). DOM also affects various biological processes such as bacterial respiration and 15 

microalgal primary production by serving as a substrate for bacterial populations 16 

(Findlay et al., 2003; Findlay and Sinsabaugh, 2003), controlling the transport and 17 

availability of trace elements (van den Berg et al., 1986; Shiller et al., 2006; Laglera et 18 
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al., 2007; Laglera and van den Berg, 2009) and absorbing photosynthetic effective 1 

sunlight (Sulzberger and Durisch-Kaiser, 2009) and harmful ultraviolet (UV) light 2 

(Nielsen et al., 1995; Nielsen and Ekelund, 1995). The quality and quantity of DOM are 3 

thought to influence these ecological functions of DOM and should be taken into 4 

account when evaluating the biogeochemical processes in aquatic ecosystems.  5 

The fluorescent spectroscopic characterisation of chromophoric DOM (CDOM), which 6 

is a coloured fraction of DOM, is an excellent method for evaluating the source and 7 

quality of DOM (Coble, 1996, 2007; Coble et al., 1990, 1993; Stedmon et al., 2003; 8 

Jaffé et al., 2008). This method compiles individual fluorescent spectra at each 9 

excitation (Ex) wavelength to generate three-dimensional excitation emission matrices 10 

(EEMs). EEMs of DOM can be highly variable and are controlled by different physical, 11 

chemical and biological processes; therefore, they can have important ecological 12 

consequences (Maie et al., 2006; Jaffé et al., 2008). In aquatic systems, fluorescent 13 

CDOM (FDOM) is assumed to be derived from biological processes in the system 14 

(autochthonous) as well as from the transport of terrestrial organic matter from rivers 15 

and the surrounding environment (allochthonous) (Jaffé et al., 2008; Yamashita and 16 

Tanoue, 2008). Autochthonous production is thought to be mainly derived from 17 

bacterial metabolic by-products (Nieto-Cid et al., 2006; Shimotori et al., 2009; 18 
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Yamashita and Tanoue, 2008). 1 

It has been well documented that phytoplankton is one of the main sources of organic 2 

matter in the sea, because it releases organic compounds such as carbohydrates and 3 

polysaccharides (Biddanda and Benner, 1997). Recently, the exudates from marine 4 

phytoplankton have also been shown to have fluorescent properties, and they may 5 

contribute as a source of marine autochthonous FDOM (Romera-Castillo et al., 2010). 6 

In coastal and estuarine environments, various phytoplankton species occasionally grow 7 

massively and attain high cell densities. These algal blooms are thought to have 8 

substantial impacts on DOM dynamics of a region.  9 

To understand direct FDOM production by marine phytoplankton, it is essential to 10 

conduct experiments using axenic cultures. However, the maintenance of axenic 11 

cultures is difficult, and very few studies have analysed FDOM production by axenic 12 

cultures of marine phytoplankton. Indeed, direct production of FDOM has been tested 13 

in only four species in the genera Chaetoceros, Skeletonema, Prorocentrum and 14 

Micromonas (Romera-Castillo et al., 2010). The optical properties of DOM varied 15 

considerably among these four species (Romera-Castillo et al., 2010). 16 

We aimed to evaluate direct production of FDOM by eight major bloom-forming 17 

coastal phytoplankton species from diverse taxonomic groups of six classes and to 18 
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reveal the fluorescent characteristics of the exuded FDOM. 1 

 2 

Methods 3 

 4 

Phytoplankton cultures 5 

 6 

Axenic cultures of the following species were used in the incubation experiments: the 7 

diatoms Ditylum brightwellii and Chaetoceros curvisetus, the raphidophyte 8 

Heterosigma akashiwo, the dinoflagellates Heterocapsa circularisquama and 9 

Alexandrium catenella, the chlorophyte Oltmansiellopsis viridis, the cryptophyte 10 

Rhodomonas ovalis and the haptophyte Pleurochrysis roscoffensis (Table I). These are 11 

commonly found bloom-forming species in the Western Pacific (Omura et al., 2012). 12 

Culture of C. curvisetus was obtained from sea bottom sediment and made axenic (Ishii, 13 

personal communication). Axenic cultures of the other seven species were made by the 14 

methods described elsewhere (Imai and Yamaguchi, 1994; Nagai et al., 1998). All the 15 

cultures were axenically maintained in the modified IHN medium (Imai et al., 2004). 16 

The axenic conditions of each culture were confirmed by DAPI staining and 17 

epifluorescence microscopy before the incubation experiments (Imai, 1987).  18 
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 1 

Incubation experiment 2 

 3 

Modified IHN medium (Imai et al., 2004) was prepared using Milli-Q water and 4 

dispensed into 50 mL conical glass flasks (30 mL in each) with autoclavable plastic 5 

caps (Iwaki, Tokyo, Japan). The prepared culture medium was sterilised by autoclaving 6 

at 121°C for 15 min. To prevent contamination with organic compounds, the glass 7 

flasks were pre-combusted at 450°C for 4 h. Well-grown strains of maintenance cultures 8 

were inoculated (600 µL) into each flask in a clean bench. The inoculated cultures were 9 

incubated under cool-white fluorescent light at 93–145 µmol photons m
−2

 s
−1

 with 10 

14:10-h light:dark cycle until they reached the stationary phase, which was 6 days for C. 11 

curvisetus, 14 days for H. akashiwo, 27 days for A. catenella and 12 days for the other 12 

species. Incubation temperature was set at 25°C for H. circularisquama and 20°C for 13 

the other species, because only the maintenance culture of H. circularisquama indicated 14 

the better growth at 25°C while the other species showed the better growth at 20°C. An 15 

autoclaved culture medium without plankton inoculation was also kept in the same 16 

conditions as a control. A small amount of each culture was taken to measure the in vivo 17 

fluorescence using a fluorometer (Model 10-AU 005, Turner Designs, Sunnyvale, 18 
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California, USA) at the start, middle and end of the culture experiments. The cell 1 

densities of the cultures were determined by microscopic counting at the end of the 2 

incubation. All the culture experiments were conducted in triplicate. 3 

 4 

Analysis 5 

 6 

After reaching the stationary phase, the cultures were filtered into pre-combusted 7 

brown glass bottles using radiation-sterilised disposable syringes (Terumo Corp., Tokyo, 8 

Japan) and GF/F filters (Whatman, Tokyo, Japan). The glass bottles and glass filters 9 

were pre-combusted at 450°C for 4 h. The three-dimensional EEM spectra of the culture 10 

filtrates were measured using a spectrofluorometer (Model F-7000, Hitachi 11 

High-Technologies, Tokyo, Japan), which was equipped with a 150 W xenon lamp. The 12 

corrections of the spectra were performed with Rhodamine B solution, according to the 13 

instructions in the instrument operation manual and the method described by Yoshioka 14 

et al. (2007). The scanning ranges were 250–400 nm for Ex and 280–480 nm for 15 

emission (Em). Fluorescence intensity (FI) was measured at 5-nm intervals for Ex and 16 

1-nm intervals for Em, with a scanning speed of 1200 nm min
−1

. The bandwidths were 5 17 

nm for both Ex and Em. The EEM spectrum of the control medium was subtracted from 18 
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each sample EEM spectrum to obtain the net increase in FDOM as a result of the 1 

microalgal activities. All the sample data of FI were standardised using quinine sulphate 2 

units (QSU), where 10 QSU correspond to the FI at 350 nm/450 nm of a 10 µg L
−1

 3 

quinine sulphate solution in 0.1 N H2SO4. Solutions of quinine sulphate (Nacalai 4 

Tesque, Inc., Kyoto, Japan) were measured with each set of samples. The FI data of 5 

each species were averaged for triplicates. 6 

The bulk dissolved organic carbon (DOC) concentration of the culture filtrate was 7 

measured using a Shimadzu TOC-VCSH total organic carbon analyzer (Shimadzu, Kyoto, 8 

Japan). The DOC content of each sample was determined using a calibration method 9 

based on a potassium hydrogen phthalate standard for each measurement. Each sample 10 

was injected five times, and the three values that yielded the minimum standard 11 

deviation were used to calculate the average DOC value for a sample. The net increase 12 

in DOC was determined by subtracting the control DOC from DOC of each sample. 13 

 14 

Calculation of the index 15 

 16 

The biomass of the cultures at the final point was estimated using previously reported 17 

models and equations (Sun and Liu, 2003; Menden-Deuer and Lessard, 2000) because 18 
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we did not directly measure the cell biomass. The cell volume was calculated by 1 

approximating the complex cell shapes as simple three-dimensional geometric models 2 

(Sun and Liu, 2003) based on the cell sizes obtained from microscopic measurements. D. 3 

brightwellii was approximated as a prism with a triangle-based girdle view shape 4 

(30-H), and C. curvisetus was approximated as a prism with an elliptic-based girdle 5 

view shape (29-H). H. akashiwo and H. circularisquama were approximated as a cone + 6 

hail sphere shape (9-H) (Sun and Liu, 2003). A. catenella was approximated as an 7 

ellipsoid (3-H). O. viridis, R. ovalis and C. roscoffensis were approximated as prolate 8 

spheroids (2-H) (Sun and Liu, 2003). The calculated cell volumes were converted into 9 

the cell biomass using the equations described by Menden-Deuer and Lessard (2000). 10 

As an indicator of the percentage of extracellular carbon released during total 11 

photosynthetic production, the apparent percentage of photosynthetic extracellular 12 

release (APER) values (Romera-Castillo et al., 2010) were calculated using the 13 

following formula:  14 

 15 

APER (%) = DOC/(DOC + Biomass) × 100, 16 

 17 

where DOC and Biomass represent the net increase in DOC in the culture medium (mg 18 
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C L
−1

) and the phytoplankton biomass (mg C L
−1

), respectively. 1 

 2 

Results 3 

 4 

Growth of the cultures and cell density attained 5 

 6 

The cell densities of the stationary phase cultures varied from 11 ± 1 × 10
3
 (cells mL

−1
) 7 

for D. brightwellii to 253 ± 45 × 10
3
 (cells mL

−1
) for R. ovalis. H. circularisquama 8 

produced the highest biomass of 33.1 ± 7.9 mg C L
−1

 among the eight species examined, 9 

and R. ovalis produced the lowest biomass of 3.5 ± 0.6 mg C L
−1

. The average growth 10 

rate in the exponential growth phase, which was calculated on the basis of the in vivo 11 

fluorescence values, varied from 0.35 ± 0.03 day
−1

 for H. akashiwo to 0.97 ± 0.07 day
−1

 12 

for C. curvisetus (Table II). The growth rates of these species in modified IHN medium 13 

were previously reported as 0.39–1.27 day
−1

 (Naito et al. 2008), which are comparable 14 

with the values obtained in the present study.  15 

 16 

DOC and APER  17 

 18 
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The increased DOC concentrations and APER values are summarised in Table III. Net 1 

increase in DOC concentrations ranged from 19.3 ± 5.1 mg C L
−1

 for H. akashiwo to 2 

49.4 ± 7.5 mg C L
−1

 for P. roscoffensis during incubation periods (Table III). APER 3 

values were estimated to be between 46.1% for A. catenella and 80.2% for P. 4 

roscoffensis, with rather wide variations. There were no significant differences in APER 5 

values among the eight species (one-way ANOVA, p = 0.198). 6 

 7 

Optical properties of DOM exudates from phytoplankton 8 

 9 

Figure 1 shows the average EEMs of the net FDOM increases for each triplicate 10 

culture filtrate sample. In all the cultures, EEMs had fluorescence peaks in the 11 

protein-like and humic-like regions (Table IV, Fig. 1). In the protein-like region, as 12 

described by Coble (1996) at Ex/Em 275 nm/340 nm (peak T) and Ex/Em 275 nm/310 13 

nm (peak B), the most prominent peaks were at 280 nm/349–357 nm (Ex/Em) for the 14 

cultures of C. curvisetus, H. circularisquama and A. catenella. In the corresponding 15 

region, H. akashiwo, O. viridis and R. ovalis had slightly shorter Em wavelengths in the 16 

range 280 nm/324–337 nm. D. brightwellii and P. roscoffensis had peaks at 255 nm/316 17 

nm and 250 nm/350 nm, respectively, although these peaks were rather uniform (Fig. 1). 18 
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The protein-like peaks were broad toward the longer Em wavelengths. In particular, H. 1 

circularisquama had a considerably broad peak toward longer Ex/Em wavelengths in 2 

the region and appeared to have an overlapping peak at 290 nm/410 nm (Fig. 1), which 3 

corresponded to peak M, i.e. marine humic-like substances, as defined by Coble et al. 4 

(1998). Peak M was only observed with H. circularisquama in the present study, 5 

whereas peak M was observed with all the marine phytoplankton axenic cultures 6 

examined by Romera-Castillo et al. (2010). O. viridis has the most prominent peak 7 

among the eight species in the protein-like fluorescent region, at 280 nm/337 nm, with 8 

an intensity of 2.22 ± 0.36 QSU (Fig. 1, Table IV). 9 

D. brightwellii, H. circularisquama, H. akashiwo and O. viridis had the maxima of 10 

humic-like fluorescence at 355 nm/454 nm, 340 nm/461 nm, 375 nm/473 nm and 375 11 

nm/462 nm, respectively (humic-like peak 1 in Table IV, Fig. 1). O. viridis had the most 12 

conspicuous peak in the fluorescent area, with an FI of 0.86 ± 0.24 QSU. C. curvisetus, 13 

A. catenella, R. ovalis and P. roscoffensis did not have defined peaks in this area (Fig. 14 

1). Coble (1996) referred to the peaks in the region of 350 nm/420–480 nm as peak C 15 

and identified them as humic-like DOM components. The peaks observed in the 16 

cultures of D. brightwellii and H. circularisquama were assumed to correspond to peak 17 

C. Furthermore, the peaks resembled the peak produced by a M. pusilla culture at 348 18 
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nm/434 nm and 348 nm/436 nm, as reported by Romera-Castillo et al. (2010). H. 1 

akashiwo and O. viridis had peaks at longer Em wavelengths, i.e. 370 nm/450–470 nm 2 

(Ex/Em), and these peaks were very close to the C1 peak reported to be related to 3 

terrestrial humic substances by Yamashita et al. (2008).  4 

Humic-like peaks were also detected in all the samples at 250–255 nm/446–471 nm 5 

(humic-like peak 2), which corresponded to peak A (260 nm/458 nm), as defined by 6 

Coble (1996). The FI of humic-like peak 2 ranged from 0.54 ± 0.04 QSU for C. 7 

curvisetus to 1.20 ± 0.16 QSU for O. viridis.  8 

DOC-specific FIs of humic like peak 1 and 2 and protein like peak considerably varied 9 

among species (Table IV). The DOC-specific FI of humic-like peak 1 was highest for O. 10 

viridis (Table IV). The DOC-specific FI of humic-like peak 2 ranged from 0.011 ± 11 

0.003 QSU L mg C
−1

 for P. roscoffensis to 0.046 ± 0.016 QSU L mg C
−1

 for 12 

H.akashiwo (Table IV). The DOC-specific FI of protein-like peak ranged from 0.011 ± 13 

0.002 QSU L mg C
−1

 for P. roscoffensis to 0.080 ± 0.018 QSU L mg C
−1

 for O. viridis 14 

(Table IV). The cell density-specific FDOM production rates were the highest for D. 15 

brightwellii in terms of both the protein-like and humic-like peaks (Table V). In terms 16 

of the biomass-specific FDOM production rates (data not shown), R. ovalis had the 17 

highest values for both fluorescent peaks. 18 
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 1 

Discussion 2 

 3 

DOC and APER 4 

 5 

Sharp et al. (1977) reported that photosynthetic extracellular release (PER) values 6 

obtained using the 
14

C method reached up to 70%. APER values obtained in the present 7 

study were 46%–80%, which were comparable with the previously reported values. In 8 

contrast, Lancelot and Billen (1985) reported that the PER value using the culture 9 

method was 0%–20%. Compared with APER values of 10%–18% obtained in a 10 

previous study using axenic cultures of microalgae (Romera-Castillo et al., 2010), the 11 

present study obtained rather high APER values (46%–80%). In the present study, the 12 

incubation period was 6–14 days, with the exception of 27 days for A. catenella (Table 13 

II), which was longer than the incubation period (3–6 days) used previously 14 

(Romera-Castillo et al., 2010). It was previously reported that PER values of the diatom 15 

Chaetoceros affinis increased by up to 58% during the phase of decreasing 16 

photosynthetic activity because of nutrient depletion (Myklestad et al., 1989). Thus, 17 

APER values appear to be affected in nutrient-limited environments (Lancelot and 18 
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Billen, 1985). The longer incubation period probably resulted in larger release of DOC 1 

from the phytoplankton cells, although we did not measure the nutrient concentration. 2 

The influence of light and nutrient stress on DOC secretion should be tested in future 3 

studies because phytoplankton are likely to experience light and nutrient stresses in 4 

natural environments. 5 

 6 

Peak assignments and possible functions of the fluorescent DOM 7 

 8 

Significant peaks were observed at approximately 275 nm/340 nm (Ex/Em) in the 9 

culture filtrates of all the species. This peak was considered to be related to protein-like 10 

substances and was previously reported as peak T (Coble 1996). Romera-Castillo et al. 11 

(2010) also reported a corresponding peak in cultures of Chaetoceros, Skeletonema, 12 

Prorocentrum and Micromonas. Phytoplankton are known to release extracellular 13 

nitrogenous compounds such as proteins, peptides and amino acids as well as 14 

carbohydrates such as polysaccharides (Goldman et al., 1992; Myklestad, 1995). Some 15 

of these substances with proteinaceous aromatic structures were probably detected as 16 

peak T. Similar peaks were detected in EEM measurements of coastal seawaters (Para et 17 

al., 2010; Yamashita et al., 2008; Maie et al., 2007). Yamashita et al. (2008) suggested 18 
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that a tryptophan-like fluorescent peak in a seawater sample from Mikawa Bay, Japan 1 

was derived from relatively fresh long-chain peptides, which were readily degradable. 2 

Maie et al. (2007) suggested that the origin of peak T in a temperate coastal seawater 3 

was a mixture of proteinaceous compounds and the phenolic structures contained in 4 

humic substances.  5 

H. circularisquama had a peak at 290 nm/410 nm, which was similar to peak M 6 

designated by Coble (1996). Peak M is found at 290–310 nm/370–410 nm (Ex/Em) and 7 

was first reported in seawater collected during a phytoplankton bloom in the Gulf of 8 

Maine (Coble, 1996) and thereafter in samples from an upwelling region in the Arabian 9 

Sea (Coble et al., 1998). This peak is considered to be related to marine humic-like 10 

substances (Coble, 1996). In a recent study, peak M was detected in the culture filtrates 11 

of four marine algal species: Chaetoceros sp., S. costatum, P. minimum and M. pusilla 12 

(Romera-Castillo et al., 2010). These findings are consistent with FDOM produced by 13 

H. circularisquama, which showed peak M in the present study. The absence of peak M 14 

in the cultures of other species examined in the present study have been possibly due to 15 

differences in the metabolic processes among the species, such as different 16 

photosynthetic pigments. 17 

Coble (1996, 2007) suggested that terrestrial humic-like materials produce two peaks 18 
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at 240–260 nm/400–460 nm (Ex/Em) (peak A) and 320–360 nm/420–460 nm (Ex/Em) 1 

(peak C). All the species produced peaks at 250–255 nm/ 446–471 nm (humic-like peak 2 

2), which were very close to peak A. Humic-like peak 2 is also similar to Component 1 3 

(<260/458 nm) in a study that used the EEM-PARAFAC method in Ise Bay, Japan 4 

(Yamashita et al., 2008). In other studies, this peak was also reported to be attributable 5 

to land-derived components, e.g. Q2 (Cory and Mcknight, 2005) and Component 1 6 

(Stedmon and Markager, 2005). 7 

D. brightwellii had a peak at 350 nm/450 nm (Ex/Em), which corresponded to the 8 

region of peak C (Coble, 1996). H. akashiwo and O. viridis had peaks at a slightly 9 

longer wavelength of 370 nm/450–470 nm (Ex/Em), and these peaks were very close to 10 

the peak attributed to terrestrial humic substances (Yoshioka et al., 2007; Yamashita et 11 

al., 2008, 2011). These findings suggest that FDOM produced by phytoplankton 12 

occasionally have a peak in the region previously assigned to terrestrial humic 13 

substances. Thus, we should be cautious when investigating the dynamics and sources 14 

of DOM in coastal areas using fluorescent analysis.  15 

It is not known how and why phytoplankton release humic-like substances. Bjørnsen 16 

(1988) suggested that DOM exudates are caused by the passive diffusion of metabolic 17 

by-products. The low-molecular-weight compounds produced by photosynthetic 18 
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metabolism and by-products of the decomposition of cellular polymers are assumed to 1 

be released extracellularly (Myklestad, 1995). However, it is possible that 2 

phytoplankton exude FDOM with ecological functions. Many species of microbial 3 

prokaryotes, fungi and some phytoplankton are known to secrete organic iron ligands, 4 

known as siderophores, in iron-depleted environments (Naito et al., 2001, 2004; Vraspir 5 

and Butler, 2009). Most siderophores appear to have aromatic structures, although the 6 

chemical structures of the siderophores secreted by eukaryotic phytoplankton are not 7 

clear at present (Naito et al., 2001; Vraspir and Butler, 2009). Humic substances also 8 

have aromatic structures and the capacity for metal complexation. Naito et al. (2001) 9 

also suggested that R. ovalis secretes siderophores; this species had the highest 10 

biomass-specific production of FDOM in the present study. Thus, it is possible that 11 

siderophores are involved with the release of humic-like fluorescence by phytoplankton. 12 

Therefore, it is necessary to investigate the biological roles of fluorescent exudates in 13 

the future. 14 

 15 

Fluorescence in natural environments and bloom formation 16 

 17 

To evaluate the contributions of phytoplankton FDOM in natural environments, we 18 
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extrapolated the values obtained in this study to a naturally occurring H. 1 

circularisquama bloom. The cell density of H. circularisquama reached >10,000 cells 2 

mL
−1

 during the bloom period in Japanese coastal water (Kamiyama et al., 2001). For 3 

this bloom, the FI of humic-like peak 1 was estimated to be 1.6 × 10
−2

 QSU using the 4 

data for the FI per cell density (Table V). The possible FIs of humic-like peak 2 and 5 

protein-like peak were also estimated in the same manner. Humic-like peak 2 and 6 

protein-like peak would have been approximately 6.60 × 10
−2

 QSU and 1.72 × 10
−1

 7 

QSU, respectively. These data suggest that it is possible to detect phytoplankton-derived 8 

FDOM in the natural aquatic environment, although these are rough estimates and high 9 

intensity FDOM in the same region derived from other sources could mask these peaks.  10 

Species-specific peaks are considered to be novel indicators that could facilitate 11 

better understanding of the contribution of microalgal activities to FDOM production. 12 

For example, Suksomjit et al. (2009) observed significant increase of tyrosine-like, 13 

tryptophan-like and humic-like fluorescence, which were centred at 225 nm/305 nm, 14 

280 nm/350 nm and 230 nm/395 nm respectively, in coastal seawater during 15 

Heterosigma akshiwo and Chaetoceros sp. bloom. While axenic cultures of H. akshiwo 16 

and C. curvisetus were indicated to produce the corresponding peaks such as 17 

protein-like peak and humic-like peak 2 in our study. The absence of humic-like peak 1 18 
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in the natural sweater was possibly due to the relatively weak FI of the peak. Moreover, 1 

it was suggested that the fluorescent peaks detected in EEM of an axenic Micromonas 2 

culture, which were centred at 275 nm/345 nm and 348 nm/436 nm, were consistent 3 

with the peak detected in natural seawater during a Micromonas bloom 4 

(Romera-Castillo et al., 2010). We observed species-specific strong peaks such as at 5 

375 nm/462 nm for O. viridis, which are likely to be identified in natural environment. 6 

It is suggested that the DOC-specific FIs are also indicators, although we should note 7 

that photo-degradability of FDOM and DOC were considered to vary (Mostofa et al., 8 

2007). We should also note that heterotrophic bacteria were known to alter the FDOM 9 

property. For instance, they consume peak M to produce peak C (Romera-Castillo et al., 10 

2011). The three-dimensional fluorescence method does not require any special 11 

techniques during the pre-treatment procedure; therefore, it is suitable for monitoring. It 12 

suggests that early detection of noxious algal blooms is possible using the EEM 13 

technique. To test this possibility, we need to monitor time-series of fluorescent EEMs 14 

in seawater during the course of a bloom event and compare the optical characteristics 15 

of seawater samples and those of the axenic culture filtrates of the noxious 16 

phytoplankton species. In the present study, we investigated the fluorescence properties 17 

of DOM exuded by eight species of axenic phytoplankton using an artificial medium. 18 
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Our knowledge about FDOM production by pure cultures of marine phytoplankton is 1 

still quite limited. For example, the study does not involve cyanobacterial species, 2 

which often form nuisance bloom in coastal areas. Further studies are required to 3 

understand the biogeochemical and ecological role of FDOM and its relative abundance 4 

in the natural environments.  5 
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Table and Figure legends 1 

 2 

Table I. Coastal phytoplankton species examined. 3 

 4 

Table II. Incubation time, growth rates (µ) during the exponential growth phase, the 5 

final cell abundance (C) and biomass (B). 6 

 7 

Table III. Net increase in the dissolved organic carbon (DOC) concentration and the 8 

apparent percentage of net photosynthetic extracellular release (APER) for each 9 

plankton culture. APER was calculated as follows: DOC/(DOC + Biomass) × 10 

100, where DOC and Biomass are the net increases in DOC and biomass during 11 

the incubation period, respectively. The data shown are average values ± 12 

standard error (S.E.) (n = 3). 13 

 14 

Table IV. Peak position, averaged fluorescence intensity (FI) standardised to quinine 15 

sulphate unit (QSU) at each peak position and DOC-specific FI of FDOM (QSU 16 

L mg C
−1

) secreted by each species. Mean value ± S.E. (n = 3). 17 

 18 
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Table V. DOC (µg C 1000 cells
−1

) and intensity of each fluorescent component (QSU 1 

mL 1000 cells
−1

), which were standardised on the basis of the cell density at the 2 

end of the incubation, secreted by the phytoplankton cultures. Mean value ± S.E. 3 

(n = 3). 4 

Fig. 1. Average excitation emission matrices of fluorescent dissolved organic matter 5 

(FDOM) secreted by each plankton culture. 6 

 7 
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Table I. Coastal phytoplankton species examined 

 

  
Bacillariophyceae 

Ditylum brightwellii (T.West) Grunow, 1885 

Chaetoceros curvisetus P.T. Cleve, 1889  

Dinoflagellata 

Heterocapsa circularisquama Horiguchi, 1995 

Alexandrium catenella (Whedon & Kofoid) E.Balech, 1985 

Raphidophyceae 

Heterosigma akashiwo (Y.Hada) Y.Hada ex Y.Hara & M.Chihara, 1967 

Chlorophyceae 

Oltmannsiellopsis viridis (P.E.Hargraves & R.L.Steele) M.Chihara & I.Inouye in Chihara, Inouye & Takahata, 

1986  

Cryptomonadea 

Rhodomonas ovalis Nygaard 

Prymnesiophyceae 

  Pleurochrysis roscoffensis (P. Dangeard) J. Fresnel & C. Billard 
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Table II. Incubation time, growth rates (µ) during the exponential growth phase, the final cell abundance (C) and biomass (B) 

 

  Phytoplakton culture Time (d) µ (d
-1

) C (cells ml
-1

) B (mg C L
-1

) 

Ditylum brightwellii 12 0.76 ± 0.05 11 ± 1 × 10
3
 18.8 ± 1.0 

Chaetoceros curvisetus 6 0.97 ± 0.07 199 ± 37 × 10
3
 5.9 ± 1.1 

Heterocapsa circularisquama 12 0.84 ± 0.01 93 ± 22 × 10
3
 33.1 ± 7.9 

Alexandrium catenella 27 0.48 ± 0.01 22 ± 3 × 10
3
 27.6 ± 4.1 

Heterosigma akashiwo 14 0.35 ± 0.03 121 ± 59 × 10
3
 28.7 ± 13.8 

Oltmannsiellopsis viridis 12 0.55 ± 0.06 247 ± 95 × 10
3
 18.2 ± 7.0 

Rhodomonas ovalis 12 0.40 ± 0.01 253 ± 45 × 10
3
 3.5 ± 0.6 

Pleurochrysis roscoffensis 12 0.45 ± 0.03 136 ± 18 × 10
3
 11.8 ± 1.6 
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Table III. Net increase in the dissolved organic carbon (DOC) concentration and the apparent percentage of net photosynthetic 

extracellular release (APER) for each plankton culture. APER was calculated as follows: DOC/(DOC + Biomass) × 100, where DOC 

and Biomass are the net increases in DOC and biomass during the incubation period, respectively. The data shown are average values ± 

standard error (S.E.) (n = 3). 

 

Phytoplakton culture DOC (mgC L
-1

) APER (%) 

Ditylum brightwellii 25.1 ± 4.9 55.9 ± 4.5 

Chaetoceros curvisetus 26.6 ± 11.3 71.5 ± 16.0 

Heterocapsa circularisquama 38.6 ± 14.8 51.0 ± 14.6 

Alexandrium catenella 24.1 ± 5.5 46.1 ± 9.4 

Heterosigma akashiwo 19.3 ± 5.1 52.4 ± 19.6 

Oltmannsiellopsis viridis 27.8 ± 4.5 63.7 ± 7.7 

Rhodomonas ovalis 26.4 ± 16.6 72.1 ± 18.6 

Pleurochrysis roscoffensis 49.9 ± 7.5 80.2 ± 3.7 
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Table IV. Peak position, averaged fluorescence intensity (FI) standardised to quinine sulphate unit (QSU) at each peak position and 

DOC-specific FI of FDOM (QSU L mg C
−1

) secreted by each species. Mean value ± S.E. (n = 3). 

 

   Humic-like peak 1  Humic-like peak 2  Protein-like peak 

  
Ex  Em FI  FI/DOC 

 
Ex  Em FI  FI/DOC 

 
Ex  Em FI  FI/DOC 

Phytoplakton culture (nm) (nm) (QSU) (QSU L mg C−1)  (nm) (nm) (QSU) (QSU L mg C−1)  (nm) (nm) (QSU) (QSU L mg C−1) 

 Ditylum brightwellii 355 454 0.26 ± 0.02 0.010 ± 0.002  250 464 0.66 ± 0.07 0.026 ± 0.006  255 316 0.58 ± 0.03 0.023 ± 0.005 

 
Chaetoceros curvisetus 

         
250 455 0.54 ± 0.04 0.020 ± 0.009 

 
280 349 0.69 ± 0.04 0.026 ± 0.011 

 

Heterocapsa 

circularisquama 
340 461 0.15 ± 0.01 0.004 ± 0.002 

 
255 441 0.61 ± 0.04 0.016 ± 0.006 

 
280 357 1.60 ± 0.10 0.041 ± 0.016 

 
Alexandrium catenella 

         
250 471 0.55 ± 0.15 0.023 ± 0.008 

 
280 352 0.75 ± 0.07 0.031 ± 0.008 

 
Heterosigma akashiwo 375 473 0.31 ± 0.10 0.016 ± 0.007 

 
250 455 0.90 ± 0.21 0.046 ± 0.016 

 
280 335 0.44 ± 0.19 0.023 ± 0.012 

 
Oltmannsiellopsis viridis 375 462 0.86 ± 0.24 0.031 ± 0.010 

 
250 455 1.20 ± 0.16 0.043 ± 0.009 

 
280 337 2.22 ± 0.36 0.080 ± 0.018 

 
Rhodomonas ovalis 

         
250 446 0.80 ± 0.13 0.030 ± 0.020 

 
280 324 1.24 ± 0.61 0.047 ± 0.038 

 Pleurochrysis roscoffensis                  250 455 0.56 ± 0.11 0.011 ± 0.003  250 350 0.57 ± 0.03 0.011 ± 0.002 
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Table V. DOC (µg C 1000 cells
−1

) and intensity of each fluorescent component (QSU mL 1000 cells
−1

), which were standardised on the 

basis of the cell density at the end of the incubation, secreted by the phytoplankton cultures. Mean value ± S.E. (n = 3).  

 

   Time DOC Humic-like peak 1 Humic-like peak 2 Protein-like peak 

Phytoplakton culture (d) (µg C 1000 cells
-1

) (QSU mL 1000 cells
-1

) (QSU mL 1000 cells
-1

) (QSU mL 1000 cells
-1

) 

 
Ditylum brightwellii 12 2.22  ± 0.45  0.023  ± 0.0024  0.058  ± 0.007  0.051  ± 0.004  

 
Chaetoceros curvisetus 6 0.13  ± 0.06  Not Detected 0.003  ± 0.001  0.003  ± 0.001  

 

Heterocapsa 

circularisquama 
12 0.42  ± 0.19  0.0016  ± 0.0004  0.007  ± 0.002  0.017  ± 0.004  

 
Alexandrium catenella 27 1.09  ± 0.29  Not Detected 0.025  ± 0.008  0.034  ± 0.006  

 
Heterosigma akashiwo 14 0.16  ± 0.09  0.0026  ± 0.0015  0.007  ± 0.004  0.004  ± 0.002  

 
Oltmannsiellopsis viridis 12 0.11  ± 0.05  0.0035  ± 0.0016  0.005  ± 0.002  0.009  ± 0.004  

 
Rhodomonas ovalis 12 0.10  ± 0.07  Not Detected 0.003  ± 0.001  0.005  ± 0.003  

 Pleurochrysis roscoffensis 12 0.37  ± 0.07  Not Detected 0.004  ± 0.001  0.004  ± 0.001  
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Fig. 1. Average excitation emission matrices of fluorescent dissolved organic matter (FDOM) 

secreted by each plankton culture. 
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