107 research outputs found

    The Q223R polymorphism in the leptin receptor associates with objectively measured light physical activity in free-living Japanese

    Get PDF
    AbstractPhysical activity (PA) is associated with reductions in the risk of all-cause mortality and in the prevalence of cardiovascular disease and stroke. Nevertheless, a large proportion of the general population may not be sufficiently active. PA level has been reported to be influenced by genetic factors, and we investigated whether Q223R polymorphism in the leptin receptor (LEPR) gene was associated with PA level. A total of 556 Japanese adults aged 24–65years old participated in this cross-sectional study. The duration and intensity of PA were objectively evaluated by triaxial accelerometry. Q223R polymorphism was determined by the TaqMan method. The distribution of Q223R polymorphism was: QQ 0.7%, QR 22.6%, and RR 76.6%. The relation between the LEPR genotype and PA level was analyzed by ANCOVA with age and sex as covariates in the Q dominant genetic model. There were significant differences between LEPR genotypes and the time spent in light PA or inactive time. The subjects with RR genotype showed significantly shorter time spent in light PA (RR genotype: 559.4±102.9min/day, QQ/QR genotype: 579.9±103.1min/day) and longer inactive time (RR genotype: 815.5±107.5min/day, QQ/QR genotype: 792.3±107.7min/day) than the subjects with QQ/QR genotype (P<0.05). There were no such differences in the time spent in moderate or vigorous PA. These results suggest that the variety of PA level, especially spontaneous PA in humans, is partly caused by diversity in the LEPR gene

    Genetic variations associated with non- contact muscle injuries in sport: A systematic review

    Full text link
    Introduction Non-contact muscle injuries (NCMI) account for a large proportion of sport injuries, affecting athletes’ performance and career, team results and financial aspects. Recently, genetic factors have been attributed a role in the susceptibility of an athlete to sustain NCMI. However, data in this field are only just starting to emerge. Objectives To review available knowledge of genetic variations associated with sport-related NCMI. Methods The databases Pubmed, Scopus, and Web of Science were searched for relevant articles published until February 2021. The records selected for review were original articles published in peer-reviewed journals describing studies that have examined NCMI-related genetic variations in adult subjects (17–60 years) practicing any sport. The data extracted from the studies identified were as follows: general information, and data on genetic polymorphisms and NCMI risk, incidence and recovery time and/or severity. Results Seventeen studies examining 47 genes and 59 polymorphisms were finally included. 29 polymorphisms affecting 25 genes were found significantly associated with NCMI risk, incidence, recovery time, and/or severity. These genes pertain to three functional categories: (i) muscle fiber structural/contractile properties, (ii) muscle repair and regeneration, or (iii) muscle fiber external matrix composition and maintenance. Conclusion Our review confirmed the important role of genetics in NCMI. Some gene variants have practical implications such as differences of several weeks in recovery time detected between genotypes. Knowledge in this field is still in its early stages. Future studies need to examine a wider diversity of sports and standardize their methods and outcome measure

    Distilling Artificial Recombinants from Large Sets of Complete mtDNA Genomes

    Get PDF
    BACKGROUND: Large-scale genome sequencing poses enormous problems to the logistics of laboratory work and data handling. When numerous fragments of different genomes are PCR amplified and sequenced in a laboratory, there is a high imminent risk of sample confusion. For genetic markers, such as mitochondrial DNA (mtDNA), which are free of natural recombination, single instances of sample mix-up involving different branches of the mtDNA phylogeny would give rise to reticulate patterns and should therefore be detectable. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a strategy for comparing new complete mtDNA genomes, one by one, to a current skeleton of the worldwide mtDNA phylogeny. The mutations distinguishing the reference sequence from a putative recombinant sequence can then be allocated to two or more different branches of this phylogenetic skeleton. Thus, one would search for two (or three) near-matches in the total mtDNA database that together best explain the variation seen in the recombinants. The evolutionary pathway from the mtDNA tree connecting this pair together with the recombinant then generate a grid-like median network, from which one can read off the exchanged segments. CONCLUSIONS: We have applied this procedure to a large collection of complete human mtDNA sequences, where several recombinants could be distilled by our method. All these recombinant sequences were subsequently corrected by de novo experiments--fully concordant with the predictions from our data-analytical approach

    Sports Science and Efforts towards Sub-Two Hour Marathon Performance

    Get PDF
    Performance in different athletic activities has continued to improve over time, with some athletes from diverse parts of the world registering new world records from time to time. With stiff competition from athletes from different parts of the world, constant upgrading of sports science based approaches to training and competition are employed to achieve more success. However, some approaches used to improve sports performance may pose ethical concerns and may challenge sports as a concept of celebrating natural human abilities. This book chapter interrogates the factors associated with efforts towards improvement of performance in endurance sports events, with a specific focus on marathon races, and the future implications for training, competition, and the nature of sports. While the interplay between nature and nurture determines the unique psychophysiological responses to training and competition, technological exploits leading to advanced sports products coupled with favourable natural and/or manipulated internal (body) and external environmental conditions will ensure continued improvement in performance. However, there is a need to censor commercial interest as well as safeguard safety and the nature of sports as a medium to celebrate natural human abilities
    corecore