1,330 research outputs found

    Big Data on Decision Making in Energetic Management of Copper Mining

    Get PDF
    Indexado en: Web of Science; Scopus.It is proposed an analysis of the related variables with the energetic consumption in the process of concentrate of copper; specifically ball mills and SAG. The methodology considers the analysis of great volumes of data, which allows to identify the variables of interest (tonnage, temperature and power) to reach to an improvement plan in the energetic efficiency. The correct processing of the great volumen of data, previous imputation to the null data, not informed and out of range, coming from the milling process of copper, a decision support systems integrated, it allows to obtain clear and on line information for the decision making. As results it is establish that exist correlation between the energetic consumption of the Ball and SAG Mills, regarding the East, West temperature and winding. Nevertheless, it is not observed correlation between the energetic consumption of the Ball Mills and the SAG Mills, regarding to the tonnages of feed of SAG Mill. In consequence, From the experimental design, a similarity of behavior between two groups of different mills was determined in lines process. In addition, it was determined that there is a difference in energy consumption between the mills of the same group. This approach modifies the method presented in [1].(a)http://www.univagora.ro/jour/index.php/ijccc/article/view/2784/106

    Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety

    Get PDF
    Indexación: Web of Science y Scopus.The application of nanotechnology in different areas of food packaging is an emerging field that will grow rapidly in the coming years. Advances in food safety have yielded promising results leading to the development of intelligent packaging (IP). By these containers, it is possible to monitor and provide information of the condition of food, packaging, or the environment. This article describes the role of the different concepts of intelligent packaging. It is possible that this new technology could reach enhancing food safety, improving pathogen detection time, and controlling the quality of food and packaging throughout the supply chain.https://www.hindawi.com/journals/js/2016/4046061/cta

    Inhibitory Receptors Beyond T Cell Exhaustion.

    Get PDF
    Inhibitory receptors (iRs) are frequently associated with "T cell exhaustion". However, the expression of iRs is also dependent on T cell differentiation and activation. Therapeutic blockade of various iRs, also referred to as "checkpoint blockade", is showing -unprecedented results in the treatment of cancer patients. Consequently, the clinical potential in this field is broad, calling for increased research efforts and rapid refinements in the understanding of iR function. In this review, we provide an overview on the significance of iR expression for the interpretation of T cell functionality. We summarize how iRs have been strongly associated with "T cell exhaustion" and illustrate the parallel evidence on the importance of T cell differentiation and activation for the expression of iRs. The differentiation subsets of CD8 T cells (naïve, effector, and memory cells) show broad and inherent differences in iR expression, while activation leads to strong upregulation of iRs. Therefore, changes in iR expression during an immune response are often concomitant with T cell differentiation and activation. Sustained expression of iRs in chronic infection and in the tumor microenvironment likely reflects a specialized T cell differentiation. In these situations of prolonged antigen exposure and chronic inflammation, T cells are "downtuned" in order to limit tissue damage. Furthermore, we review the novel "checkpoint blockade" treatments and the potential of iRs as biomarkers. Finally, we provide recommendations for the immune monitoring of patients to interpret iR expression data combined with parameters of activation and differentiation of T cells

    Evaluating Conformance to WCAG 2.0: Open Challenges

    Get PDF
    Web accessibility for people with disabilities is a highly visible area of work in the field of ICT accessibility, including many policy activities in several countries. The commonly accepted guidelines for web accessibility (WCAG 1.0) were published in 1999 and have been extensively used by designers, evaluators and legislators. A new version of these guidelines (WCAG 2.0) was published in 2008. In this paper we point out the main challenges that WCAG 2.0 raises for web accessibility evaluators: the concept of "accessibility supported technologies"; success criteria testability; technique and failure openness, and the aggregation of partial results. We conclude the paper with some recommendations for the future

    Biophysical analysis of the MHR motif in folding and domain swapping of the HIV capsid protein C-terminal domain

    Get PDF
    © 2015 Biophysical Society. Infection by human immunodeficiency virus (HIV) depends on the function, in virion morphogenesis and other stages of the viral cycle, of a highly conserved structural element, the major homology region (MHR), within the carboxyterminal domain (CTD) of the capsid protein. In a modified CTD dimer, MHR is swapped between monomers. While no evidence for MHR swapping has been provided by structural models of retroviral capsids, it is unknown whether it may occur transiently along the virus assembly pathway. Whatever the case, the MHR-swapped dimer does provide a novel target for the development of anti-HIV drugs based on the concept of trapping a nonnative capsid protein conformation. We have carried out a thermodynamic and kinetic characterization of the domain-swapped CTD dimer in solution. The analysis includes a dissection of the role of conserved MHR residues and other amino acids at the dimerization interface in CTD folding, stability, and dimerization by domain swapping. The results revealed some energetic hotspots at the domain-swapped interface. In addition, many MHR residues that are not in the protein hydrophobic core were nevertheless found to be critical for folding and stability of the CTD monomer, which may dramatically slow down the swapping reaction. Conservation of MHR residues in retroviruses did not correlate with their contribution to domain swapping, but it did correlate with their importance for stable CTD folding. Because folding is required for capsid protein function, this remarkable MHR-mediated conformational stabilization of CTD may help to explain the functional roles of MHR not only during immature capsid assembly but in other processes associated with retrovirus infection. This energetic dissection of the dimerization interface in MHR-swapped CTD may also facilitate the design of anti-HIV compounds that inhibit capsid assembly by conformational trapping of swapped CTD dimers.Spanish Government (BIO2012-37649) and Comunidad de Madrid (S-2009/MAT/1467) and by an institutional grant from Fundación Ramón Areces.Peer Reviewe

    The generating function for a particular class of characters of SU(n)

    Get PDF
    We compute the generating function for the characters of the irreducible representations of SU(n) whose associated Young diagrams have only two rows with the same number of boxes. The result is a rational determinantal expression in which both the numerator and the denominator have a simple structure when expressed in terms of Schur polynomials.Comment: 7 pages, no figure

    Epidemiological findings on interventional cardiology procedures during the COVID-19 pandemic: A multi-center study

    Get PDF
    Background: The rates of in-hospital mortality following percutaneous interventional procedures (PIP) during the COVID-19 pandemic period compared to the non-pandemic period has not been reported so far. Methods: We retrospectively enrolled all consecutive patients admitted for PIP across five centers from February 2020 to May 2020. Results: A total of 4092 PIP were performed during the reference periods. The total number of procedures dropped from 2380 to 1712 (28.0% reduction). Overall in-hospital mortality increased from 1.1% in 2019, to 2.6% in 2020 (63% relative increase). Conclusion: During the COVID-19 pandemic, in-hospital all-cause mortality significantly increased in patients admitted for cardiological PIP

    Different Experimental and Numerical Models to Analyse Emptying Processes in Pressurised Pipes with Trapped Air

    Get PDF
    In hydraulic engineering, some researchers have developed different mathematical and numerical tools for a better understanding of the physical interaction between water flow in pipes with trapped air during emptying processes, where they have made contributions on the use of simple and complex models in different application cases. In this article, a comparative study of different experimental and numerical models existing in the literature for the analysis of trapped air in pressurised pipelines subjected to different scenarios of emptying processes is presented, where different authors have develope, experimental, one-dimensional mathematical and complex computational fluid dynamics (CFD) models (two-dimensional and three-dimensional) to understand the level of applicability of these models in different hydraulic scenarios, from the physical and computational point of view. In general, experimental, mathematical and CFD models had maximum Reynolds numbers ranging from 2670 to 20,467, and it was possible to identify that the mathematical models offered relevant numerical information in a short simulation time on the order of seconds. However, there are restrictions to visualise some complex hydraulic and thermodynamic phenomena that CFD models are able to illustrate in detail with a numerical resolution similar to the mathematical models, and these require simulation times of hours or days. From this research, it was concluded that the knowledge of the information offered by the different models can be useful to hydraulic engineers to identify physical and numerical elements present in the air–water interaction and computational conditions necessary for the development of models that help decision-making in the field of hydraulics of pressurised pipelines

    Rapid Filling Analysis with an Entrapped Air Pocket in Water Pipelines Using a 3D CFD Model

    Get PDF
    A filling operation generates continuous changes over the shape of an air–water interface, which can be captured using a 3D CFD model. This research analyses the influence of different hydro-pneumatic tank pressures and air pocket sizes as initial conditions for studying rapid filling operations in a 7.6 m long PVC pipeline with an irregular profile, using the OpenFOAM software. The analysed scenarios were validated using experimental measurements, where the 3D CFD model was suitable for simulating them. In addition, a mesh sensitivity analysis was performed. Air pocket pressure patterns, water velocity oscillations, and the different shapes of the air–water interface were analysed
    corecore