42 research outputs found

    3MG: Meervoudige Milieu Monitoring voor Gebiedssturing; Een case study voor de Noordelijke Friese Wouden

    Get PDF
    Sinds 2005 is TransForum betrokken bij een praktijkproject in de Noordelijke Friese Wouden (het project NFW) waarin samen met boeren, bestuurders, overheden en maatschappelijke groepen wordt gezocht naar mogelijkheden om de beoogde zelfsturing vorm en inhoud te geven. Om voor milieukwaliteitdoelen een onderbouwd antwoord te kunnen geven heeft TransForum naast het praktijkproject NFW een meer analytisch gericht wetenschappelijk project ondersteund waarin een operationeel meetinstrument is ontwikkeld en getoetst. In deze studie is gebruik gemaakt van gegevens van aanwezige meetnetten in combinatie met geïntegreerde modellen. Het betreft: ammoniakemissie, stikstofdepositie, grondwaterkwaliteit, oppervlaktewaterkwalitei

    Zelfsturing kan niet zonder doelen en monitoring

    Get PDF
    De leden van de Vereniging ‘Noardlike Fryske Wâlden’, grotendeels melkveehouders, willen graag zelf sturen op milieudoelen in de Noordelijke Friese Wouden. Hierbij willen zij collectief op milieudoelstellingen worden afgerekend, in plaats van individueel te moeten voldoen aan generieke middelvoorschriften. Twee zaken zijn noodzakelijk voor deze vorm van zelfsturing. Ten eerste moeten er heldere doelen voor milieuprestaties en milieukwaliteit zijn waarop gestuurd kan worden. Ten tweede moet er een monitoringsysteem zijn om vast te stellen of de doelen worden gehaald. Dit artikel beschrijft de ontwikkeling van milieumonitoring om de gewenste zelfsturing mogelijk te make

    Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods

    Get PDF
    Dry deposition of ammonia (NH3) is the largest contributor to the nitrogen deposition from the atmosphere to soil and vegetation in the Netherlands, causing eutrophication and loss of biodiversity; however, data sets of NH3 fluxes are sparse and in general have monthly resolution at best. An important reason for this is that measurement of the NH3 flux under dry conditions is notoriously difficult. There is no technique that can be considered as the gold standard for these measurements, which complicates the testing of new techniques. Here, we present the results of an intercomparison of two novel measurement set-ups aimed at measuring dry deposition of NH3 at half hourly resolution. Over a 5-week period, we operated two novel optical open-path techniques side by side at the Ruisdael station in Cabauw, the Netherlands: the RIVM-miniDOAS 2.2D using the aerodynamic gradient technique, and the commercial Healthy Photon HT8700E using the eddy covariance technique. These instruments are widely different in their measurement principle and approach to derive deposition values from measured concentrations; however, both techniques showed very similar results (r=0.87) and small differences in cumulative fluxes (∼ 10 %) as long as the upwind terrain was homogeneous and free of nearby obstacles. The observed fluxes varied from ∼ −80 to ∼ +140 ng NH3 m−2 s−1. Both the absolute flux values and the temporal patterns were highly similar, which substantiates that both instruments were able to measure NH3 fluxes at high temporal resolution. However, for wind directions with obstacles nearby, the correlations between the two techniques were weaker. The uptime of the miniDOAS system reached 100 % once operational, but regular intercalibration of the system was applied in this campaign (35 % of the 7-week uptime). Conversely, the HT8700E did not measure during and shortly after rain, and the coating of its mirrors tended to degrade (21 % data loss during the 5-week uptime). In addition, the NH3 concentrations measured by the HT8700E proved sensitive to air temperature, causing substantial differences (range: −15 to +6 µg m−3) between the two systems. To conclude, the miniDOAS system appears ready for long-term hands-off monitoring. The current HT8700E system, on the other hand, had a limited stand-alone operational time under the prevailing weather conditions. However, under relatively dry and low-dust conditions, the system can provide sound results, opening good prospects for future versions, also for monitoring applications. The new high temporal resolution data from these instruments can facilitate the study of processes behind NH3 dry deposition, allowing an improved understanding of these processes and better parameterisation in chemical transport models.</p

    Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling

    Get PDF
    The impact of atmospheric reactive nitrogen (Nr_{r}) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr_{r} deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr_{r} deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr_{r} inputs and losses, these data were also combined with in situ flux measurements of NO, N2_{2}O and CH4_{4} fluxes; soil NO3_{3}̅ leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm−2^{-2} yr−1^{-1} at total wet+dry inorganic Nr_{r} deposition rates (Ndep_{dep}) of 0.3 to 4.3 gNm−2^{-2} yr−1^{-1} and from -4 to 361 g Cm−2^{-2} yr−1^{-1} at Ndep_{dep} rates of 0.1 to 3.1 gNm−2^{-2} yr−1^{-1} in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2_{2} exchange, while CH4_{4} and N2_{2}O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated Ndep_{dep} where Nr_{r} leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N2_{2} losses by denitrification. Nitrogen losses in the form of NO, N2_{2}O and especially NO3_{3}̅ were on average 27%(range 6 %–54 %) of Ndep_{dep} at sites with Ndep_{dep} 3 gNm−2^{-2} yr−1^{-1}. Such large levels of Nr_{r} loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with Nr_{r} deposition up to 2–2.5 gNm−2^{-2} yr−1^{-1}, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP = GPP ratio). At elevated Ndep_{dep} levels (> 2.5 gNm−2^{-2} yr−1^{-1}), where inorganic Nr_{r} losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep_{dep} levels was partly the result of geographical cross-correlations between Ndep_{dep} and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep_{dep}

    The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

    Get PDF
    During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018.The UK sites were funded by the UK Department of Business, Energy and Industrial Strategy (formerly the Department of Energy and Climate Change) through contracts TRN1028/06/2015 and TRN1537/06/2018. The stations at the ClimaDat Network in Spain have received funding from the ‘la Caixa’ Foundation, under agreement 2010-002624

    Data Descriptor : Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    Get PDF
    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.Peer reviewe

    ECLAIRE: Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems. Project final report

    Get PDF
    The central goal of ECLAIRE is to assess how climate change will alter the extent to which air pollutants threaten terrestrial ecosystems. Particular attention has been given to nitrogen compounds, especially nitrogen oxides (NOx) and ammonia (NH3), as well as Biogenic Volatile Organic Compounds (BVOCs) in relation to tropospheric ozone (O3) formation, including their interactions with aerosol components. ECLAIRE has combined a broad program of field and laboratory experimentation and modelling of pollution fluxes and ecosystem impacts, advancing both mechanistic understanding and providing support to European policy makers. The central finding of ECLAIRE is that future climate change is expected to worsen the threat of air pollutants on Europe’s ecosystems. Firstly, climate warming is expected to increase the emissions of many trace gases, such as agricultural NH3, the soil component of NOx emissions and key BVOCs. Experimental data and numerical models show how these effects will tend to increase atmospheric N deposition in future. By contrast, the net effect on tropospheric O3 is less clear. This is because parallel increases in atmospheric CO2 concentrations will offset the temperature-driven increase for some BVOCs, such as isoprene. By contrast, there is currently insufficient evidence to be confident that CO2 will offset anticipated climate increases in monoterpene emissions. Secondly, climate warming is found to be likely to increase the vulnerability of ecosystems towards air pollutant exposure or atmospheric deposition. Such effects may occur as a consequence of combined perturbation, as well as through specific interactions, such as between drought, O3, N and aerosol exposure. These combined effects of climate change are expected to offset part of the benefit of current emissions control policies. Unless decisive mitigation actions are taken, it is anticipated that ongoing climate warming will increase agricultural and other biogenic emissions, posing a challenge for national emissions ceilings and air quality objectives related to nitrogen and ozone pollution. The O3 effects will be further worsened if progress is not made to curb increases in methane (CH4) emissions in the northern hemisphere. Other key findings of ECLAIRE are that: 1) N deposition and O3 have adverse synergistic effects. Exposure to ambient O3 concentrations was shown to reduce the Nitrogen Use Efficiency of plants, both decreasing agricultural production and posing an increased risk of other forms of nitrogen pollution, such as nitrate leaching (NO3-) and the greenhouse gas nitrous oxide (N2O); 2) within-canopy dynamics for volatile aerosol can increase dry deposition and shorten atmospheric lifetimes; 3) ambient aerosol levels reduce the ability of plants to conserve water under drought conditions; 4) low-resolution mapping studies tend to underestimate the extent of local critical loads exceedance; 5) new dose-response functions can be used to improve the assessment of costs, including estimation of the value of damage due to air pollution effects on ecosystems, 6) scenarios can be constructed that combine technical mitigation measures with dietary change options (reducing livestock products in food down to recommended levels for health criteria), with the balance between the two strategies being a matter for future societal discussion. ECLAIRE has supported the revision process for the National Emissions Ceilings Directive and will continue to deliver scientific underpinning into the future for the UNECE Convention on Long-range Transboundary Air Pollution

    ECLAIRE third periodic report

    Get PDF
    The ÉCLAIRE project (Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems) is a four year (2011-2015) project funded by the EU's Seventh Framework Programme for Research and Technological Development (FP7)

    Reliability Testing Of Ac-Module Inverters

    No full text
    : AC-modules are relatively large PV modules (approx. 100-200W) with an integrated inverter, mostly attached to the back of the PV-module. The AC-module can directly be connected to the grid. The flexibility and the modularity of the AC-modules make this technology a very promising one. One of the question marks of this AC-module technology, however, is the reliability and lifetime. The reliability tests that are performed at ECN consist of an accelerated lifetime test (high temperature test) and a temperature cycling test. Test results of the high temperature test will be presented. In order to determine realistic temperature distributions 12 AC-modules will be monitored while mounted outdoors on a tilted roof. Keywords : AC-modules - 1 : Qualification and Testing - 2 : Lifetime - 3 1. INTRODUCTION AC modules have a number of clear advantages over conventional large PV inverters in PV systems, [1]. At the moment the technology of AC modules is still improving rapidly. Before ..

    Concentraties en depositie : Trends in ammoniak en ammonium

    No full text
    Dit artikel geeft de laatste stand van zaken aan de hand van een analyse van metingen in regenwater en lucht in de periode 1990-2015. We beschrijven de resultaten van deze belangrijkste meetreeksen gerelateerd aan ammoniak en vervolgens geven we aan welk algemeen beeld hieruit af te leiden valt
    corecore