96 research outputs found
Temporal differences in DNA replication during the S phase using single fiber analysis of normal human fibroblasts and glioblastoma T98G cells
We have recently shown that replication forks pause near origins in normal human fibroblasts (NHF1-hTERT) but not glioblastoma T98G cells. This observation led us to question whether other differences in the replication program may exist between these cell types that may relate to their genetic integrity. To identify differences, we detected immunoflourescently the sequential incorporation of the nucleotide analogs IdU and CldU into replicating DNA at the start of every hour of a synchronized S phase. We then characterized the patterns of labeled replicating DNA tracks and quantified the percentages and lengths of the tracks found at these hourly intervals. From the directionality of labeling in single extended replicating DNA fibers, tracks were categorized as single bidirectional origins, unidirectional elongations, clusters of origins firing in tandem, or merging forks (terminations). Our analysis showed that the start of S phase is enriched in single bidirectional origins in NHF1-hTERT cells, followed by an increase in clustering during mid S phase and an increase in merging forks during late S phase. Early S phase in T98G cells also largely consisted of single bidirectional origin initiations; however, an increase in clustering was delayed until an hour later, and clusters were shorter in mid/late S phase than in NHF1-hTERT cells. The spike in merging forks also did not occur until an hour later in T98G cells. Our observations suggest models to explain the temporal replication of single and clustered origins, and suggest differences in the replication program in a normal and cancer cell line
DNA replication in early S phase pauses near newly activated origins
During the S phase of the cell cycle, the entire genome is replicated. There is a high level of orderliness to this process through the temporally and topologically coordinated activation of many replication origins situated along chromosomes. We investigated the program of replication from origins initiating in early S phase by labeling synchronized normal human fibroblasts (NHF1) with nucleotide analogs for various pulse times and measuring labeled tracks in combed DNA fibers. Our analysis showed that replication forks progress 9–35 kilobases from newly initiated origins, followed by a pause in synthesis before replication resumes. Pausing was not observed near origins that initiated in the middle of S phase. No evidence for pausing near origins was found at the beginning of the S phase in glioblastoma T98G cells. Treatment with the S phase checkpoint inhibitor caffeine abrogated pausing in NHF1 cells in early S phase. This suggests that pausing may comprise a novel aspect of the intra-S phase checkpoint pathway or a related new early S checkpoint. Further, it is possible that the loss of this regulatory process in cancer cells such as T98G could be a contributing factor in the genetic instability that typifies cancers
BRG1 co-localizes with DNA replication factors and is required for efficient replication fork progression
For DNA replication to occur, chromatin must be remodeled. Yet, we know very little about which proteins alter nucleosome occupancy at origins and replication forks and for what aspects of replication they are required. Here, we demonstrate that the BRG1 catalytic subunit of mammalian SWI/SNF-related complexes co-localizes with origin recognition complexes, GINS complexes, and proliferating cell nuclear antigen at sites of DNA replication on extended chromatin fibers. The specific pattern of BRG1 occupancy suggests it does not participate in origin selection but is involved in the firing of origins and the process of replication elongation. This latter function is confirmed by the fact that Brg1 mutant mouse embryos and RNAi knockdown cells exhibit a 50% reduction in replication fork progression rates, which is associated with decreased cell proliferation. This novel function of BRG1 is consistent with its requirement during embryogenesis and its role as a tumor suppressor to maintain genome stability and prevent cancer
Fragile Genomic Sites Are Associated with Origins of Replication
Genome rearrangements are mediators of evolution and disease. Such rearrangements are frequently bounded by transfer RNAs (tRNAs), transposable elements, and other repeated elements, suggesting a functional role for these elements in creating or repairing breakpoints. Though not well explored, there is evidence that origins of replication also colocalize with breakpoints. To investigate a potential correlation between breakpoints and origins, we analyzed evolutionary breakpoints defined between Saccharomyces cerevisiae and Kluyveromyces waltii and S. cerevisiae and a hypothetical ancestor of both yeasts, as well as breakpoints reported in the experimental literature. We find that origins correlate strongly with both evolutionary breakpoints and those described in the literature. Specifically, we find that origins firing earlier in S phase are more strongly correlated with breakpoints than are later-firing origins. Despite origins being located in genomic regions also bearing tRNAs and Ty elements, the correlation we observe between origins and breakpoints appears to be independent of these genomic features. This study lays the groundwork for understanding the mechanisms by which origins of replication may impact genome architecture and disease
DNA replication and the GINS complex: localization on extended chromatin fibers
<p>Abstract</p> <p>Background</p> <p>The GINS complex is thought to be essential for the processes of initiation and elongation of DNA replication. This complex contains four subunits, one of which (Psf1) is proposed to bind to both chromatin and DNA replication-associated proteins. To date there have been no microscopic analyses to evaluate the chromatin distribution of this complex. Here, we show the organization of GINS complexes on extended chromatin fibers in relation to sites of DNA replication and replication-associated proteins.</p> <p>Results</p> <p>Using immunofluorescence microscopy we were able to visualize ORC1, ORC2, PCNA, and GINS complex proteins Psf1 and Psf2 bound to extended chromatin fibers. We were also able to detect these proteins concurrently with the visualization of tracks of recently replicated DNA where EdU, a thymidine analog, was incorporated. This allowed us to assess the chromatin association of proteins of interest in relation to the process of DNA replication. ORC and GINS proteins were found on chromatin fibers before replication could be detected. These proteins were also associated with newly replicated DNA in bead-like structures. Additionally, GINS proteins co-localized with PCNA at sites of active replication.</p> <p>Conclusion</p> <p>In agreement with its proposed role in the initiation of DNA replication, GINS proteins associated with chromatin near sites of ORC binding that were devoid of EdU (absence of DNA replication). The association of GINS proteins with PCNA was consistent with a role in the process of elongation. Additionally, the large size of our chromatin fibers (up to approximately 7 Mb) allowed for a more expansive analysis of the distance between active replicons than previously reported.</p
Trumpocracy : a conversation with David Frum
Join us for a Q&A with David Frum moderated by GRC Director Peter Klein. Frum is the author of TRUMPOCRACY: The Corruption of the American Republic. He is also a Senior Editor at The Atlantic. From 2014 through 2017, he served as chairman of the board of trustees of the leading UK center-right think tank, Policy Exchange. In 2001-2002, he served as speechwriter and special assistant to President George W. Bush; in 2007-2008, as senior adviser to the Rudy Giuliani presidential campaigns.Non UBCUnreviewedOthe
Trump Brings Religion Into the Coronavirus Culture War: Religious services shouldn’t be exempted from state pandemic regulations
This article discusses the tension between state politicians and worshippers when it comes to protecting public health and First Amendment rights. The article features quotes from President Trump and his belief that state politicians are targeting Christian churches over other places of worship. The impact of President Trump’s words is discussed. Examples are given that demonstrate the resistance of religious groups to stay-at-home orders issued by multiple state governors
- …
