29 research outputs found

    Study protocol of the FIRE-8 (AIO-KRK/YMO-0519) trial: a prospective, randomized, open-label, multicenter phase II trial investigating the efficacy of trifluridine/tipiracil plus panitumumab versus trifluridine/tipiracil plus bevacizumab as first-line treatment in patients with metastatic colorectal cancer

    Get PDF
    Background: Initial systemic therapy for patients with metastatic colorectal cancer (mCRC) is usually based on two- or three-drug chemotherapy regimens with fluoropyrimidine (5-fluorouracil (5-FU) or capecitabine), oxaliplatin and/or irinotecan, combined with either anti-VEGF (bevacizumab) or, for RAS wild-type (WT) tumors, anti-EGFR antibodies (panitumumab or cetuximab). Recommendations for patients who are not eligible for intensive combination therapies are limited and include fluoropyrimidine plus bevacizumab or single agent anti-EGFR antibody treatment. The use of a monochemotherapy concept of trifluridine/ tipiracil in combination with monoclonal antibodies is not approved for first-line therapy, yet. Results from the phase II TASCO trial evaluating trifluridine/tipiracil plus bevacicumab in first-line treatment of mCRC patients and from the phase I/II APOLLON trial investigating trifluridine/tipiracil plus panitumumab in pre-treated mCRC patients suggest favourable activity and tolerability of these new therapeutic approaches. Methods: FIRE-8 (NCT05007132) is a prospective, randomized, open-label, multicenter phase II study which aims to evaluate the efficacy of first-line treatment with trifluridine/tipiracil (35 mg/m(2) body surface area (BSA), orally twice daily on days 1-5 and 8-12, q28 days) plus either the anti-EGFR antibody panitumumab (6 mg/kg body weight, intravenously on day 1 and 15, q28 days) [arm A] or (as control arm) the anti-VEGF antibody bevacizumab (5 mg/kg body weight, intravenously on day 1 and 15, q28 days) [arm B] in RAS WT mCRC patients. The primary objective is to demonstrate an improved objective response rate (ORR) according to RECIST 1.1 from 30% (control arm) to 55% with panitumumab. With a power of 80% and a two-sided significance level of 0.05, 138 evaluable patients are needed. Given an estimated drop-out rate of 10%, 153 patients will be enrolled. Discussion: To the best of our knowledge, this is the first phase II trial to evaluate the efficacy of trifluridine/tipiracil plus panitumumab in first-line treatment of RAS WT mCRC patients. The administration of anti-EGFR antibodies rather than anti-VEGF antibodies in combination with trifluridine/tipiracil may result in an increased initial efficacy

    The Fruehaufs of Aschenhausen and Stadlengsfeld /

    No full text
    Manuscript about the genealogy of the Fruehauf family from Aschenhausen and Stadtlengsfeld in Thuringia, Germany

    Study design: two long-term observational studies of the biosimilar filgrastim Nivestimâ„¢ (Hospira filgrastim) in the treatment and prevention of chemotherapy-induced neutropenia.

    Get PDF
    International audienceNivestim™ (filgrastim) is a follow-on biologic agent licensed in the EU for the treatment of neutropenia and febrile neutropenia induced by myelosuppressive chemotherapy. Nivestim™ has been studied in phase 2 and 3 clinical trials where its efficacy and safety was found to be similar to its reference product, Neupogen®. Follow-on biologics continue to be scrutinised for safety. We present a design for two observational phase IV studies that are evaluating the safety profile of Nivestim™ for the prevention and treatment of febrile neutropenia (FN) in patients treated with cytotoxic chemotherapy in general clinical practice. The NEXT (Tolérance de Nivestim chez les patiEnts traités par une chimiothérapie anticancéreuse cytotoXique en praTique courante) and VENICE (VErträglichkeit von NIvestim unter zytotoxischer Chemotherapie in der Behandlung malinger Erkrankungen) trials are multicentre, prospective, longitudinal, observational studies evaluating the safety profile of Nivestim™ in 'real-world' clinical practice. Inclusion criteria include patients undergoing cytotoxic chemotherapy for malignancy and receiving Nivestim as primary or secondary prophylaxis (NEXT and VENICE), or as treatment for ongoing FN (NEXT only). In accordance with European Union pharmacovigilance guidelines, the primary objective is to evaluate the safety of Nivestim™ by gathering data on adverse events in all system organ classes. Secondary objectives include obtaining information on patient characteristics, efficacy of Nivestim™ therapy (including chemotherapy dose intensity), patterns of use of Nivestim™, and physician knowledge regarding filgrastim prescription and the reasons for choosing Nivestim™. Data will be gathered at three visits: 1. At the initial inclusion visit, 2. At a 1-month follow-up visit, and 3. At the end of chemotherapy.Recruitment for VENICE commenced in July 2011 and in November 2011 for NEXT. VENICE completed recruitment in July 2013 with 407 patients, and NEXT in September 2013 with 2123 patients. Last patient, last visit for each study will be December 2013 and March 2014 respectively. The NEXT and VENICE studies will provide long-term safety, efficacy and practice pattern data in patients receiving Nivestim™ to support myelosuppressive chemotherapy in real world clinical practice. These data will improve our understanding of the performance of Nivestim™ in patients encountered in the general patient population. NEXT NCT01574235, VENICE NCT01627990

    Viral Determinants of Integration Site Preferences of Simian Immunodeficiency Virus-Based Vectors

    No full text
    Preferential integration into transcriptionally active regions of genomes has been observed for retroviral vectors based on gamma-retroviruses and lentiviruses. However, differences in the integration site preferences were detected, which might be explained by differences in viral components of the preintegration complexes. Viral determinants of integration site preferences have not been defined. Therefore, integration sites of simian immunodeficiency virus (SIV)-based vectors produced in the absence of accessory genes or lacking promoter and enhancer elements were compared. Similar integration patterns for the different SIV vectors indicate that vif, vpr, vpx, nef, env, and promoter or enhancer elements are not required for preferential integration of SIV into transcriptionally active regions of genomes

    Relevance and Clinical Implications of Tumor Cell Mobilization in the Autologous Transplant Setting

    Get PDF
    Autologous transplantation of peripheral blood (PB) hematopoietic stem cells (HSCs) is a widely used strategy for reconstitution of blood cells following high-dose chemotherapy for hematologic malignancies such as multiple myeloma (MM), non-Hodgkin lymphoma (NHL), and acute myeloid leukemia (AML), among others. Stem cells for transplantation are usually obtained from PB after treatment with chemotherapy with or without cytokine, usually granulocyte-colony stimulating factor (G-CSF), or after treatment with cytokine alone. The use of autologous peripheral blood stem cells (PBSCs) for transplantation is associated with the risk of contamination of the graft with tumor cells; whether this impacts response rates, progression-free survival (PFS), and overall survival (OS) is still debatable. This review summarizes the controversy surrounding tumor cell mobilization (TCM), the complexity of detection of minimal residual diseases, the available diagnostic tools, differences in TCM with available mobilization regimens, and the potential effect of TCM on clinical outcome. Collectively, these data suggest that new treatment paradigms to manage hematologic malignancies, such as MM, NHL, and AML, are needed and should focus on increasing the chemosensitivity of the tumor and eliminating residual disease

    Compatibility of Biosimilar Filgrastim with Cytotoxic Chemotherapy during the Treatment of Malignant Diseases (VENICE): A Prospective, Multicenter, Non-Interventional, Longitudinal Study

    No full text
    <p><strong>Article full text</strong></p> <p><br> The full text of this article can be found <a href="https://link.springer.com/article/10.1007/s12325-016-0419-1"><b>here</b>.</a><br> <br> <strong>Provide enhanced digital features for this article</strong><br> If you are an author of this publication and would like to provide additional enhanced digital features for your article then please contact <u>[email protected]</u>.<br> <br> The journal offers a range of additional features designed to increase visibility and readership. All features will be thoroughly peer reviewed to ensure the content is of the highest scientific standard and all features are marked as ‘peer reviewed’ to ensure readers are aware that the content has been reviewed to the same level as the articles they are being presented alongside. Moreover, all sponsorship and disclosure information is included to provide complete transparency and adherence to good publication practices. This ensures that however the content is reached the reader has a full understanding of its origin. No fees are charged for hosting additional open access content.<br> <br> Other enhanced features include, but are not limited to:<br> • Slide decks<br> • Videos and animations<br> • Audio abstracts<br> • Audio slides<u></u></p
    corecore