3,537 research outputs found

    Determining 241Pu in environmental samples: case studies in alpine soils

    Get PDF
    A procedure was developed for determining 241Pu activity in environmental samples. This beta emitter isotope of plutonium was measured by ultra low level liquid scintillation, after several separation and purification steps that involved the use of a highly selective extraction chromatographic resin (Eichrom-TEVA). Due to the lack of reference material for 241Pu, the method was nevertheless validated using four IAEA reference sediments with information values for 241Pu. Next, the method was used to determine the 241Pu activity in alpine soils of Switzerland and France. The 241Pu/239,240Pu and 238Pu/239,240Pu activity ratios confirmed that Pu contamination in the tested alpine soils originated mainly from global fallout from nuclear weapon tests conducted in the fifties and sixties. Estimation of the date of the contamination, using the 241Pu/241Am age-dating method, further confirmed this origin. However, the 241Pu/241Am dating method was limited to samples where Pu-Am fractionation was insignificant. If any, the contribution of the Chernobyl accident is negligibl

    Speciation and Bioavailability Measurements of Environmental Plutonium Using Diffusion in Thin Films.

    Get PDF
    The biological uptake of plutonium (Pu) in aquatic ecosystems is of particular concern since it is an alpha-particle emitter with long half-life which can potentially contribute to the exposure of biota and humans. The diffusive gradients in thin films technique is introduced here for in-situ measurements of Pu bioavailability and speciation. A diffusion cell constructed for laboratory experiments with Pu and the newly developed protocol make it possible to simulate the environmental behavior of Pu in model solutions of various chemical compositions. Adjustment of the oxidation states to Pu(IV) and Pu(V) described in this protocol is essential in order to investigate the complex redox chemistry of plutonium in the environment. The calibration of this technique and the results obtained in the laboratory experiments enable to develop a specific DGT device for in-situ Pu measurements in freshwaters. Accelerator-based mass-spectrometry measurements of Pu accumulated by DGTs in a karst spring allowed determining the bioavailability of Pu in a mineral freshwater environment. Application of this protocol for Pu measurements using DGT devices has a large potential to improve our understanding of the speciation and the biological transfer of Pu in aquatic ecosystems

    The UARS microwave limb sounder version 5 data set: Theory, characterization, and validation

    Get PDF
    Nitric acid (HNO3) is a major player in processes controlling the springtime depletion of polar ozone. It is the main constituent of the Polar Stratospheric Clouds (PSCs) and a primary reservoir for reactive nitrogen. Potential variations in the stratospheric circulation and temperature may alter the extent and duration of PSCs activity, influencing the future ozone levels significantly. Monitoring HNO3 and its long-term variability, especially in polar region, is then crucial for better understanding issues related to ozone decline and expected recovery. In this study we present an intercomparison between ground based HNO3 measurements, carried out by means of the Ground-Based Millimeter-wave Spectrometer (GBMS), and two satellite data sets produced by the two NASA/JPL Microwave Limb Sounder (MLS) experiments. In particular, we compare UARS MLS measurements (1991-1999) with those carried out by the GBMS at South Pole, Antarctica (90°S), Fall of 1993 and 1995. A similar intercomparison is made between Aura MLS HNO3 observations (2004 - to date) and GBMS measurements obtained during the period February 2004 - March 2007, at the mid-latitudes/high altitudes station of Testa Grigia (45.9° N, 7.7° E, elev. 3500 m), and during polar winters 2008/09 and 2009/2010 at Thule Air Base (76.5°N 68.8°W), Greenland. We assess systematic differences between GBMS and both UARS and Aura HNO3 data sets at seven potential temperature levels (θ) spanning the range 465 – 960 K. The UARS data set advected to the South Pole shows a low bias, within 20% for all θ levels but the 960 K, with respect to GBMS measurements. A very good agreement, within 5%, is obtained between Aura and GBMS observations at Testa Grigia, while larger differences, possibly due to latitude dependent effects, are observed over Thule. These differences are under further investigations but a preliminary comparison over Thule among MLS v3, GBMS, and ACE-FTS measurements suggests that GBMS measurements carried out during winter 2009 might not be reliable. These comparisons have been performed in the framework of the NASA JPL GOZCARDS project, which is aimed at developing a long-term, global data record of the relevant stratospheric constituents in the context of ozone decline. GBMS has been selected in GOZCARDS since its HNO3 dataset, although sampling different latitudes in different years, is the only one spanning a sufficiently long time interval for cross-calibrating HNO3 measurements by the UARS and Aura MLS experiments

    Calibration of an HPGe detector and self-attenuation correction for Pb-210: Verification by alpha spectrometry of Po-210 in environmental samples

    Get PDF
    In this work the calibration of an HPGe detector for Pb-210 measurement is realised by a liquid standard source and the determination of this radionuclide in solid environmental samples by gamma spectrometry takes into account a correction factor for self-attenuation of its 46.5 keV line. Experimental, theoretical and Monte Carlo investigations are undertaken to evaluate self-attenuation for cylindrical sample geometry. To validate this correction factor (at equilibrium with Po-210 Pb-210) alpha spectrometry procedure using microwave acid digestion under pressure is developed and proposed. The different self-attenuation correction methods are in coherence, and corrected Pb-210 activities are in good agreement with the results of Po-210. Finally, self-attenuation corrections are proposed for environmental solid samples whose density ranges between 0.8 and 1.4 g/cm(3) and whose mass attenuation coefficient is around 0.4 cm(2)/g. (C) 2007 Elsevier B.V. All rights reserved

    Use of dipicolinate-based complexes for producing ion-imprinted polystyrene resins for the extraction of yttrium-90 and heavy lanthanide cations

    Get PDF
    Highly selective separation of yttrium (and lanthanides) is of interest for the design of radiopharmaceuticals, and an efficient method based on the ion-imprinting concept is proposed here. The synthesis and structural, thermodynamic and photophysical characterization of complexes of trivalent yttrium and lanthanides with two new vinyl derivatives of dipicolinic acid, HL1 and L2, are described. The feasibility of using ion-imprinted resins for yttrium and lanthanide separation is demonstrated. The resins were obtained by copolymerization with styrene and divinylbenzene and subsequent acid treatment to remove the metal ion. High-resolution Eu luminescence experiments revealed that the geometry of the complexation sites is well preserved in the imprinted polymers. The ion-imprinted polymer based on HL1 proved to be particularly well adapted for yttrium extraction, having a sizeable capacity (8.9 +- 0.2 g/mg resin) and a fast rate of extraction (t1/2 = 1.7 min). In addition, lighter and heavier lanthanide ions are separated. Finally, the resin displays high selectivity for yttrium and lanthanide cations against alkali and alkaline earth metals. For instance, in a typical experiment, 10 mg of yttrium was extracted from 5 g of milk ash sample by 2 g of the resin. The good separation properties displayed by the resin based on HL1 open interesting perspectives for the production of highly pure 90Y and radiolanthanides for medical applications, and for trace analysis of these radiochemicals in food and in the environment

    Record-breaking ozone loss in the Arctic winter 2010/2011: comparison with 1996/1997

    Get PDF
    We present a detailed discussion of the chemical and dynamical processes in the Arctic winters 1996/1997 and 2010/2011 with high resolution chemical transport model (CTM) simulations and space-based observations. In the Arctic winter 2010/2011, the lower stratospheric minimum temperatures were below 195 K for a record period of time, from December to mid-April, and a strong and stable vortex was present during that period. Simulations with the Mimosa-Chim CTM show that the chemical ozone loss started in early January and progressed slowly to 1 ppmv (parts per million by volume) by late February. The loss intensified by early March and reached a record maximum of ~2.4 ppmv in the late March–early April period over a broad altitude range of 450–550 K. This coincides with elevated ozone loss rates of 2–4 ppbv sh^(−1) (parts per billion by volume/sunlit hour) and a contribution of about 30–55% and 30–35% from the ClO-ClO and ClO-BrO cycles, respectively, in late February and March. In addition, a contribution of 30–50% from the HO_x cycle is also estimated in April. We also estimate a loss of about 0.7–1.2 ppmv contributed (75%) by the NO_x cycle at 550–700 K. The ozone loss estimated in the partial column range of 350–550 K exhibits a record value of ~148 DU (Dobson Unit). This is the largest ozone loss ever estimated in the Arctic and is consistent with the remarkable chlorine activation and strong denitrification (40–50%) during the winter, as the modeled ClO shows ~1.8 ppbv in early January and ~1 ppbv in March at 450–550 K. These model results are in excellent agreement with those found from the Aura Microwave Limb Sounder observations. Our analyses also show that the ozone loss in 2010/2011 is close to that found in some Antarctic winters, for the first time in the observed history. Though the winter 1996/1997 was also very cold in March–April, the temperatures were higher in December–February, and, therefore, chlorine activation was moderate and ozone loss was average with about 1.2 ppmv at 475–550 K or 42 DU at 350–550 K, as diagnosed from the model simulations and measurements

    A double parton scattering background to Higgs boson production at the LHC

    Get PDF
    The experimental capability of recognizing the presence of b quarks in complex hadronic final states has addressed the attention towards final states with b\bar{b} pairs for observing the production of the Higgs boson at the LHC, in the intermediate Higgs mass range.We point out that double parton scattering processes are going to represent a sizeable background to the process.Comment: 9 pages, 2 figure
    corecore