9 research outputs found
The cation diffusion facilitator protein MamM's cytoplasmic domain exhibits metal-type dependent binding modes and discriminates against Mn2+
Cation diffusion facilitator (CDF) proteins are a conserved family of divalent transition metal cation transporters. CDF proteins are usually composed of two domains: the transmembrane domain (TMD), in which the metal cations are transported through, and a regulatory cytoplasmic C-terminal domain (CTD). Each CDF protein transports either one specific metal, or multiple metals, from the cytoplasm, and it is not known if the CTD takes an active regulatory role in metal recognition and discrimination during cation transport. Here, the model CDF protein MamM, an iron transporter from magnetotactic bacteria, was used to probe the role of the CTD in metal recognition and selectivity. Using a combination of biophysical and structural approaches, the binding of different metals to MamM CTD was characterized. Results reveal that different metals bind distinctively to MamM CTD in terms of their binding sites, thermodynamics and binding-dependent conformations, both in crystal form and in solution, which suggests a varying level of functional discrimination between CDF domains. Furthermore, these results provide the first direct evidence that CDF CTDs play a role in metal selectivity. We demonstrate that MamM's CTD can discriminate against Mn2+, supporting its postulated role in preventing magnetite formation poisoning in magnetotactic bacteria via Mn2+ incorporation
e-CoVig: a novel mHealth system for remote monitoring of symptoms in COVID-19
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).In 2019, a new virus, SARS-CoV-2, responsible for the COVID-19 disease, was discovered. Asymptomatic and mildly symptomatic patients were forced to quarantine and closely monitor their symptoms and vital signs, most of the time at home. This paper describes e-CoVig, a novel mHealth application, developed as an alternative to the current monitoring paradigm, where the patients are followed up by direct phone contact. The e-CoVig provides a set of functionalities for remote reporting of symptoms, vital signs, and other clinical information to the health services taking care of these patients. The application is designed to register and transmit the heart rate, blood oxygen saturation (SpO2), body temperature, respiration, and cough. The system features a mobile application, a web/cloud platform, and a low-cost specific device to acquire the temperature and SpO2. The architecture of the system is flexible and can be configured for different operation conditions. Current commercial devices, such as oximeters and thermometers, can also be used and read using the optical character recognition (OCR) functionality of the system. The data acquired at the mobile application are sent automatically to the web/cloud application and made available in real-time to the medical staff, enabling the follow-up of several users simultaneously without the need for time consuming phone call interactions. The system was already tested for its feasibility and a preliminary deployment was performed on a nursing home showing promising results.This work was funded by Fundação para a Ciência e Tecnologia (FCT) under the grants e-CoVig—Project 255_596880547, and LARSyS—Project UIDB/50009/2020, by FCT/MCTES through national funds and, when applicable, co-funded EU funds under the grant NICE-HOME—Project UIDB/50008/2020, and by the IT—Instituto de Telecomunicações under grant BI/No. 13—19 May 2020 “AIMHealth”, which is gratefully acknowledged.info:eu-repo/semantics/publishedVersio
The di-iron protein YtfE is a nitric oxide-generating nitrite reductase involved in management of nitrosative stress
Previously characterized nitrite reductases fall into three classes: siroheme-containing enzymes (NirBD), cytochrome c hemoproteins (NrfA and NirS), and copper-containing enzymes (NirK). We show here that the di-iron protein YtfE represents a physiologically relevant new class of nitrite reductases. Several functions have been previously proposed for YtfE, including donating iron for the repair of iron-sulfur clusters that have been damaged by nitrosative stress, releasing nitric oxide (NO) from nitrosylated iron, and reducing NO to nitrous oxide (N2O). Here, in vivo reporter assays confirmed that Escherichia coli YtfE increased cytoplasmic NO production from nitrite. Spectroscopic and mass spectrometric investigations revealed that the di-iron site of YtfE exists in a mixture of forms, including nitrosylated and nitrite-bound, when isolated from nitrite-supplemented, but not nitrate-supplemented, cultures. Addition of nitrite to di-ferrous YtfE resulted in nitrosylated YtfE and the release of NO. Kinetics of nitrite reduction were dependent on the nature of the reductant; the lowest Km, measured for the di-ferrous form, was ~90 ÎĽM, well within the intracellular nitrite concentration range. The vicinal di-cysteine motif, located in the N-terminal domain of YtfE, was shown to function in the delivery of electrons to the di-iron center. Notably, YtfE exhibited very low NO reductase activity and was only able to act as an iron donor for reconstitution of apo-ferredoxin under conditions that damaged its di-iron center. Thus, YtfE is a high-affinity, low-capacity nitrite reductase that we propose functions to relieve nitrosative stress by acting in combination with the co-regulated NO-consuming enzymes Hmp and Hcp
Electrochemically-Switched 2nd Order Non-Linear Optical Response in an Arylimido-Polyoxometalate with High Contrast and Cyclability
Electrochemically switched 2nd order non-linear optical responses have been demonstrated for the first time in polyoxometalates (POMs), with an arylimido-derivative showing a leading combination of high on/off contrast (94%), high visible transparency, and cyclability. Spectro-electrochemical and TD-DFT studies indicate that the switch-off results from weakened charge transfer (CT) character of the electronic transitions in the reduced state. This represents the first study of an imido-POM reduced state, and demonstrates the potential of POM hybrids as electrochemically activated molecular switches
Obsessive-Compulsive Symptoms as a Manifestation of Homocystinuria
Homocystinuria is a rare autosomal recessive metabolic disorder due to a defect in the cystathionine β-synthase (CBS) that leads to high homocysteine plasma levels. Psychiatric symptoms secondary to homocystinuria have been described in the literature; however, there is a lack of information about obsessive-compulsive symptoms correlated to this disorder. We describe the case of a 39 years old man, diagnosed with homocystinuria in childhood, with no previous psychiatric history that presented obsessive-compulsive disorder (OCD) like symptoms, as a manifestation of homocystinuria. This case underlines the importance for a psychiatrist to explore medical nonpsychiatric history, especially when presentation is abrupt, atypical, or in treatment-resistant cases
Uncovering the burden of Influenza in children in Portugal, 2008-2018
Background
Despite their higher risk of developing severe disease, little is known about the burden of influenza in Portugal in children aged < 5 years old. This study aims to cover this gap by estimating the clinical and economic burden of severe influenza in children, in Portugal, during ten consecutive influenza seasons (2008/09-2017/18).
Methods
We reviewed hospitalizations in children aged < 5 years old using anonymized administrative data covering all public hospitals discharges in mainland Portugal. The burden of hospitalization and in-hospital mortality directly coded as due to influenza was supplemented by the indirect burden calculated from excess hospitalization and mortality (influenza-associated), estimated for four groups of diagnoses (pneumonia or influenza, respiratory, respiratory or cardiovascular, and all-cause), through cyclic regression models integrating the incidence of influenza. Means were reported excluding the H1N1pdm09 pandemic (2009/10).
Results
The mean annual number of hospitalizations coded as due to influenza was 189 (41.3 cases per 100,000 children aged < 5 years old). Hospitalization rates decreased with increasing age. Nine-in-ten children were previously healthy, but the presence of comorbidities increased with age. Children stayed, on average, 6.1 days at the hospital. Invasive mechanical ventilation was used in 2.4% of hospitalizations and non-invasive in 3.1%. Influenza-associated excess hospitalizations between 2008 and 2018 were estimated at 1,850 in pneumonia or influenza, 1,760 in respiratory, 1,787 in respiratory or cardiovascular, and 1,879 in all-cause models. A total of 95 influenza-associated excess deaths were estimated in all-cause, 14 in respiratory or cardiovascular, and 9 in respiratory models. Over ten years, influenza hospitalizations were estimated to have cost the National Health Service at least €2.9 million, of which 66.5% from healthy children.
Conclusions
Influenza viruses led to a high number of hospitalizations in children. Most were previously healthy. Results should lead to a reflection on the adequate preventive measures to protect this age group.The BARI study was funded by Sanofi