230 research outputs found

    Person perception as a function of quantity change in artificial social objects: a developmental approach

    Get PDF
    Call number: LD2668 .T4 1967 F919Master of Scienc

    The Resource Prospector Neutron Spectrometer System: RP's Bloodhound

    Get PDF
    The primary goal of the Resource Prospector Neutron Spectrometer System (NSS) is to locate and characterize hydrogen-bearing volatile deposits, especially subsurface ice, that may exist at the lunar poles. A key objective is to detect water-equivalent hydrogen concentrations of 0.5 wt% or greater while on a moving rover. A second objective is to determine approximate burial depth of enhanced hydrogen-bearing materials up to 1 meter below otherwise dry regolith. The instrument will be carried aboard a landed mobility system at the lunar poles. The instrument operates by measuring the changes in the leakage flux of low energy neutrons out of the regolith. These neutrons are produced by galactic cosmic rays, which are so energetic that they shatter the nuclei in surface materials. The neutrons interact with other nuclei and lose energy, becoming thermalized in the process. Hydrogen is most efficient at thermalizing neutrons owing to protons' similar mass - statistically, neutrons lose half their energy per collision with protons. With hydrogen in the soil, leakage fluxes of neutrons in the 0.5 eV to 500 keV energy range are reduced. A concentration of only1-2 wt% water-equivalent hydrogen results in a decrease in epithermal leakage flux of a factor of two. The leakage flux of thermal neutrons, from 0 to 0.5 eV in energy, can either increase or decrease depending on the hydrogen abundance and stratigraphy. As with the highly successful Lunar Prospector Neutron Spectrometer, the RP NSS detects both thermal and epithermal neutrons by using two helium-3 gas proportional counters, one covered by cadmium and the other uncovered. The former detects only epithermal neutrons with energies above approximately 0.5 eV, the latter detects both thermal (less than 0.5 eV) and epithermal energies (greater than 0.5 eV). When a neutron enters the detector tube and interacts with a helium-3 nucleus, the resulting reaction produces an energetic proton and triton that ionize the gas. The resulting electrons are accelerated toward a high-voltage anode and cascade, amplifying the net charge, which is collected at the anode. The number of electrons produced is proportional to the energy that the triton and proton deposit in the gas. A charge sensitive pre-amplifier converts the total charge to a step voltage output. A shaper amplifier then shapes this step into a uni-polar waveform with peaking time appropriate for the detection depending on the event rate. The integrated shaped waveform, representing the deposited triton/proton energy, is then measured. A histogram, or pulse height analysis, is performed to record the main capture peak and wall effect pulses. A threshold for detection is also required to limit the low amplitude counting rate such as noise floor. The system electronics consists of 2 modules - the Sensor Module (SM) front-end and the Data Processing Module (DPM) back-end circuits. SM is designed as a light-weight and low power front-end housing the two helium-3 proportional counter detectors, preamp and HVPS. It is mounted external to the rover body to detect the thermalized neutron flux with a minimum of host background. The DPM is located inside the rover; it digitizes the SM signals, performs pulse height analysis and accumulates the count rate for each spectral channel. The DPM controls high voltage and thresholding, and sends the science data to the host craft via an RS422 serial asynchronous protocol. The payload host provides all thermal management and control for the SM and DPM

    Detection of the argonaute protein Ago2 and microRNAs in the RNA induced silencing complex (RISC) using a monoclonal antibody

    Get PDF
    MicroRNAs (miRNAs) are short RNA molecules responsible for post-transcriptional gene silencing by the degradation or translational inhibition of their target messenger RNAs (mRNAs). This process of gene silencing, known as RNA interference (RNAi), is mediated by highly conserved Argonaute (Ago) proteins which are the key components of the RNA induced silencing complex (RISC). In humans, Ago2 is responsible for the endonuclease cleavage of targeted mRNA and it interacts with the mRNAbinding protein GW182, which is a marker for cytoplasmic foci referred to as GW bodies (GWBs). We demonstrated that the antiAgo2 monoclonal antibody 4F9 recognized GWBs in a cell cycle dependent manner and was capable of capturing miRNAs associated with Ago2. Since Ago2 protein is the effector protein of RNAi, anti-Ago2 monoclonal antibody may be useful in capturing functional miRNAs

    Stress granules and processing bodies are dynamically linked sites of mRNP remodeling

    Get PDF
    Stress granules (SGs) are cytoplasmic aggregates of stalled translational preinitiation complexes that accumulate during stress. GW bodies/processing bodies (PBs) are distinct cytoplasmic sites of mRNA degradation. In this study, we show that SGs and PBs are spatially, compositionally, and functionally linked. SGs and PBs are induced by stress, but SG assembly requires eIF2α phosphorylation, whereas PB assembly does not. They are also dispersed by inhibitors of translational elongation and share several protein components, including Fas-activated serine/threonine phosphoprotein, XRN1, eIF4E, and tristetraprolin (TTP). In contrast, eIF3, G3BP, eIF4G, and PABP-1 are restricted to SGs, whereas DCP1a and 2 are confined to PBs. SGs and PBs also can harbor the same species of mRNA and physically associate with one another in vivo, an interaction that is promoted by the related mRNA decay factors TTP and BRF1. We propose that mRNA released from disassembled polysomes is sorted and remodeled at SGs, from which selected transcripts are delivered to PBs for degradation

    Anti-DFS70/LEDGF Antibodies Are More Prevalent in Healthy Individuals Compared to Patients with Systemic Autoimmune Rheumatic Diseases

    Get PDF
    Objective.Antinuclear antibodies (ANA) are a serological hallmark of systemic autoimmune rheumatic diseases (SARD) such as systemic lupus erythematosus (SLE). While a number of ANA patterns detected by indirect immunofluorescence (IIF) have diagnostic significance, autoantibodies producing the dense fine speckled (DFS) pattern have been reported to be more prevalent in healthy individuals than in SARD.Methods.Sequential samples submitted for ANA testing were screened for anti-DFS antibodies by IIF (n = 3263). Samples with the DFS pattern were tested for anti-DFS70/lens epithelium–derived growth factor (LEDGF) antibodies by ELISA and by a novel chemiluminescence assay (CIA, Quanta Flash DFS70). Sera from patients with various diseases and healthy individuals were tested for anti-DFS70/LEDGF antibodies by CIA. A cohort of 251 patients with SLE was used to analyze serological and clinical associations of anti-DFS70 antibodies.Results.The frequency of anti-DFS antibodies by IIF was 1.62%. The prevalence of anti-DFS70/LEDGF antibodies as detected by CIA in the different cohorts was 8.9% in healthy individuals, 2.8% in SLE, 2.6% in rheumatoid arthritis, 4.0% in asthma, 5.0% in interstitial cystitis, 1.7% in Graves' disease, and 6.0% in Hashimoto's thyroiditis. Of note, the prevalence of anti-DFS70/LEDGF antibodies was significantly higher in healthy individuals compared to patients with SARD (p = 0.00085). In SLE results, anti-DFS70/LEDGF antibodies were not significantly associated with clinical features or other autoantibodies typically found in SLE. Only 1/7 SLE sera showed anti-DFS70/LEDGF, but no other autoantibody reactivity.Conclusion."Monospecific" anti-DFS70/LEDGF antibodies may represent a biomarker for differentiating SARD from non-SARD individuals, but there is a need for a reliable assay to ensure reactivity to DFS70

    Documenting Surface and Sub-surface Volatiles While Drilling in Frozen Lunar Simulant

    Get PDF
    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar regions and permanently shadowed regions. RP is slated to carry two instruments for prospecting purposes. These include the Neutron Spectrometer System (NSS) and Near-Infrared Volatile Spectrometer System (NIRVSS). A Honybee Robotics drill (HRD) is intended to sample to depths of 1 m, and deliver a sample to a crucible that is processed by the Oxygen Volatile Extraction Node (OVEN) where the soil is heated and evolved gas is delivered to the gas chromatograph / mass spectrometer of the Lunar Advanced Volatile Analysis system (LAVA). For several years, tests of various sub-systems have been undertaken in a large cryo-vacuum chamber facility (VF-13) located at Glenn Research Center. In these tests a large tube (1.2 m high x 25.4 cm diameter) is filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. There are thermo-couples embedded at different depths, and also across the surface of the soil tube. The soil tube is placed in the chamber and cooled with LN2 as the pressure is reduced to approx.5-6x10(exp -6) Torr. Here we discuss May 2016 tests where two soil tubes were prepared and placed in the chamber. Also located in the chamber were 5 crucibles, an Inficon mass spectrometer, and a trolly permitting x-y translation, where the HRD and NIRVSS, were mounted. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment

    Near-Infrared Monitoring of Volatiles in Frozen Lunar Simulants While Drilling

    Get PDF
    In Situ Resource Utilization (ISRU) focuses on using local resources for mission consumables. The approach can reduce mission cost and risk. Lunar polar volatiles, e.g. water ice, have been detected via remote sensing measurements and represent a potential resource for both humans and propellant. The exact nature of the horizontal and depth distribution of the ice remains to be documented in situ. NASA's Resource Prospector mission (RP) is intended to investigate the polar volatiles using a rover, drill, and the RESOLVE science package. RP component level hardware is undergoing testing in relevant lunar conditions (cryovacuum). In March 2015 a series of drilling tests were undertaken using the Honeybee Robotics RP Drill, Near-Infrared Volatile Spectrometer System (NIRVSS), and sample capture mechanisms (SCM) inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The goal of these tests was to investigate the ability of NIRVSS to monitor volatiles during drilling activities and assess delivery of soil sample transfer to the SCMs in order to elucidate the concept of operations associated with this regolith sampling method

    Report on the second International Consensus on ANA Pattern (ICAP) workshop in Dresden 2015

    Get PDF
    The second meeting for the International Consensus on Antinuclear antibody (ANA) Pattern (ICAP) was held on 22 September 2015, one day prior to the opening of the 12th Dresden Symposium on Autoantibodies in Dresden, Germany. The ultimate goal of ICAP is to promote harmonization and understanding of autoantibody nomenclature, and thereby optimizing ANA usage in patient care. The newly developed ICAP website www.ANApatterns.org was introduced to the more than 50 participants. This was followed by several presentations and discussions focusing on key issues including the two-tier classification of ANA patterns into competent-level versus expert-level, the consideration of how to report composite versus mixed ANA patterns, and the necessity for developing a consensus on how ANA results should be reported. The need to establish on-line training modules to help users gain competency in identifying ANA patterns was discussed as a future addition to the website. To advance the ICAP goal of promoting wider international participation, it was agreed that there should be a consolidated plan to translate consensus documents into other languages by recruiting help from members of the respective communities
    • …
    corecore