362 research outputs found

    Effective connectivity reveals strategy differences in an expert calculator

    Get PDF
    Mathematical reasoning is a core component of cognition and the study of experts defines the upper limits of human cognitive abilities, which is why we are fascinated by peak performers, such as chess masters and mental calculators. Here, we investigated the neural bases of calendrical skills, i.e. the ability to rapidly identify the weekday of a particular date, in a gifted mental calculator who does not fall in the autistic spectrum, using functional MRI. Graph-based mapping of effective connectivity, but not univariate analysis, revealed distinct anatomical location of “cortical hubs” supporting the processing of well-practiced close dates and less-practiced remote dates: the former engaged predominantly occipital and medial temporal areas, whereas the latter were associated mainly with prefrontal, orbitofrontal and anterior cingulate connectivity. These results point to the effect of extensive practice on the development of expertise and long term working memory, and demonstrate the role of frontal networks in supporting performance on less practiced calculations, which incur additional processing demands. Through the example of calendrical skills, our results demonstrate that the ability to perform complex calculations is initially supported by extensive attentional and strategic resources, which, as expertise develops, are gradually replaced by access to long term working memory for familiar material

    Intra- and inter-individual genetic differences in gene expression

    Get PDF
    Genetic variation is known to influence the amount of mRNA produced by a gene. Given that the molecular machines control mRNA levels of multiple genes, we expect genetic variation in the components of these machines would influence multiple genes in a similar fashion. In this study we show that this assumption is correct by using correlation of mRNA levels measured independently in the brain, kidney or liver of multiple, genetically typed, mice strains to detect shared genetic influences. These correlating groups of genes (CGG) have collective properties that account for 40-90% of the variability of their constituent genes and in some cases, but not all, contain genes encoding functionally related proteins. Critically, we show that the genetic influences are essentially tissue specific and consequently the same genetic variations in the one animal may up-regulate a CGG in one tissue but down-regulate the same CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. The implication of this study is that this class of genetic variation can result in complex inter- and intra-individual and tissue differences and that this will create substantial challenges to the investigation of phenotypic outcomes, particularly in humans where multiple tissues are not readily available.

&#xa

    Decoration supplementation and male–male competition in the great bowerbird (Ptilonorhynchus nuchalis): a test of the social control hypothesis

    Get PDF
    Many animals use signals to communicate their social status to conspecifics, and the social control hypothesis suggests that social interactions maintain the evolutionary stability of status signals: low-quality individuals signal at a low level to prevent high-quality individuals from “punishing” them. I examined whether the numbers of decorations at bowers are socially controlled in the great bowerbird (Ptilonorhynchus nuchalis). In two populations, I supplemented males with decorations to determine whether they (a) rejected supplemental decorations and (b) experienced increased bower destruction from rivals. In contrast to the social control hypothesis, males in both populations accepted most supplemental decorations. Though the mean destruction rate did not increase during supplementation in either population, one of the study populations (Townsville) exhibited a negative correlation between the numbers of decorations naturally displayed at bowers and the change in destruction rate during the experiment. Townsville males that naturally had few decorations at their bowers also had more decorations stolen by other males during supplementation than males that naturally had many decorations. These results suggest that the numbers of decorations at bowers are an honest signal of the male's ability to defend his display site from rivals in at least one population of the great bowerbird (Townsville), but they do not support the social control hypothesis because males at both sites failed to limit signal expression. I discuss how the external nature of bower decorations and their availability in the environment may influence the costs and benefits of decoration theft and social control

    The role of bisphosphonates in breast cancer: Development of bisphosphonates

    Get PDF
    Bisphosphonates are synthetic compounds characterized by a P–C–P group, and are thus analogs of inorganic pyrophosphate. They are used in medicine mainly to inhibit bone resorption in diseases like osteoporosis, Paget's disease and tumor bone disease. They have been used for over a century in industry, and only in 1968 was it shown that bisphosphonates have biological effects. These effects consist mainly of an inhibition of bone resorption and, when given in large amounts, an inhibition of ectopic and normal calcification. While the latter effect is the consequence of a physical-chemical inhibition of calcium phosphate crystal formation, the former is due to a cellular effect involving both apoptosis of the osteoclasts and a destruction of the osteoclastic cytoskeleton, inducing a decrease in osteoclast activity. The biochemical basis of these effects for the nitrogen-containing compounds is an inhibition of the mevalonate pathway caused by the inhibition of farnesylpyrophosphate synthase, which leads to a decrease of the formation of isoprenoid lipids such as farnesylpyrophosphate and geranylgeranylpyrophosphate. The other bisphosphonates are incorporated into the phosphate chain of ATP-containing compounds so that they become non-hydrolyzable. The new P–C–P-containing ATP analogs inhibit cell function and may lead to apoptosis and death of osteoclasts

    Parameters for accurate genome alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome sequence alignments form the basis of much research. Genome alignment depends on various mundane but critical choices, such as how to mask repeats and which score parameters to use. Surprisingly, there has been no large-scale assessment of these choices using real genomic data. Moreover, rigorous procedures to control the rate of spurious alignment have not been employed.</p> <p>Results</p> <p>We have assessed 495 combinations of score parameters for alignment of animal, plant, and fungal genomes. As our gold-standard of accuracy, we used genome alignments implied by multiple alignments of proteins and of structural RNAs. We found the HOXD scoring schemes underlying alignments in the UCSC genome database to be far from optimal, and suggest better parameters. Higher values of the X-drop parameter are not always better. E-values accurately indicate the rate of spurious alignment, but only if tandem repeats are masked in a non-standard way. Finally, we show that γ-centroid (probabilistic) alignment can find highly reliable subsets of aligned bases.</p> <p>Conclusions</p> <p>These results enable more accurate genome alignment, with reliability measures for local alignments and for individual aligned bases. This study was made possible by our new software, LAST, which can align vertebrate genomes in a few hours <url>http://last.cbrc.jp/</url>.</p

    Drawing firmer conclusions: autistic children show no evidence of a local processing bias in a controlled copying task

    Get PDF
    Drawing tasks are frequently used to test competing theories of visuospatial skills in autism. Yet, methodological differences between studies have led to inconsistent findings. To distinguish between accounts based on local bias or global deficit, we present a simple task that has previously revealed dissociable local/global impairments in neuropsychological patients. Autistic and typical children copied corner elements, arranged in a square configuration. Grouping cues were manipulated to test whether global properties affected the accuracy of reproduction. All children were similarly affected by these manipulations. There was no group difference in the reproduction of local elements, although global accuracy was negatively related to better local processing for autistic children. These data speak against influential theories of visuospatial differences in autism

    Dynamic Social Adaptation of Motion-Related Neurons in Primate Parietal Cortex

    Get PDF
    Social brain function, which allows us to adapt our behavior to social context, is poorly understood at the single-cell level due largely to technical limitations. But the questions involved are vital: How do neurons recognize and modulate their activity in response to social context? To probe the mechanisms involved, we developed a novel recording technique, called multi-dimensional recording, and applied it simultaneously in the left parietal cortices of two monkeys while they shared a common social space. When the monkeys sat near each other but did not interact, each monkey's parietal activity showed robust response preference to action by his own right arm and almost no response to action by the other's arm. But the preference was broken if social conflict emerged between the monkeys—specifically, if both were able to reach for the same food item placed on the table between them. Under these circumstances, parietal neurons started to show complex combinatorial responses to motion of self and other. Parietal cortex adapted its response properties in the social context by discarding and recruiting different neural populations. Our results suggest that parietal neurons can recognize social events in the environment linked with current social context and form part of a larger social brain network

    Activation of the SMU.1882 Transcription by CovR in Streptococcus mutans

    Get PDF
    In Streptococcus mutans, the global response regulator CovR plays an important role in biofilm formation, stress-tolerance response, and caries production. We have previously shown that CovR acts as a transcriptional repressor by binding to the upstream promoter regions of its target genes. Here, we report that in vivo, CovR activates the transcription of SMU.1882, which encodes a small peptide containing a double-glycine motif. We also show that SMU.1882 is transcriptionally linked to comA that encodes a putative ABC transporter protein. Several genes from man gene clusters that encode mannose phosphotranferase system flank SMU.1882 -comA genes. Genomic comparison with other streptococci indicates that SMU.1882 is uniquely present in S. mutans, while the man operon is conserved among all streptococci, suggesting that a genetic rearrangement might have taken place at this locus. With the use of a transcriptional reporter system and semi-quantitative RT-PCR, we demonstrated the transcriptional regulation of SMU.1882 by CovR. In vitro gel shift and DNase I foot-printing analyses with purified CovR suggest that CovR binds to a large region surrounding the -10 region of the P1882. Using this information and comparing with other CovR regulated promoters, we have developed a putative consensus binding sequence for CovR. Although CovR binds to P1882, in vitro experiments using purified S. mutans RpoD, E. coli RNA polymerase, and CovR did not activate transcription from this promoter. Thus, we speculate that in vivo, CovR may interfere with the binding of a repressor or requires a cofactor

    Past changes in the vertical distribution of ozone - Part 3: Analysis and interpretation of trends

    Get PDF
    This is the final version of the article. It first appeared from Copernicus Publications via http://dx.doi.org/10.5194/acp-15-9965-2015Abstract. Trends in the vertical distribution of ozone are reported and compared for a number of new and recently revised data sets. The amount of ozone-depleting compounds in the stratosphere (as measured by equivalent effective stratospheric chlorine – EESC) was maximised in the second half of the 1990s. We examine the periods before and after the peak to see if any change in trend is discernible in the ozone record that might be attributable to a change in the EESC trend, though no attribution is attempted. Prior to 1998, trends in the upper stratosphere (~ 45 km, 4 hPa) are found to be −5 to −10 % per decade at mid-latitudes and closer to −5 % per decade in the tropics. No trends are found in the mid-stratosphere (28 km, 30 hPa). Negative trends are seen in the lower stratosphere at mid-latitudes in both hemispheres and in the deep tropics. However, it is hard to be categorical about the trends in the lower stratosphere for three reasons: (i) there are fewer measurements, (ii) the data quality is poorer, and (iii) the measurements in the 1990s are perturbed by aerosols from the Mt Pinatubo eruption in 1991. These findings are similar to those reported previously even though the measurements for the main satellite and ground-based records have been revised. There is no sign of a continued negative trend in the upper stratosphere since 1998: instead there is a hint of an average positive trend of ~ 2 % per decade in mid-latitudes and ~ 3 % per decade in the tropics. The significance of these upward trends is investigated using different assumptions of the independence of the trend estimates found from different data sets. The averaged upward trends are significant if the trends derived from various data sets are assumed to be independent (as in Pawson et al., 2014) but are generally not significant if the trends are not independent. This occurs because many of the underlying measurement records are used in more than one merged data set. At this point it is not possible to say which assumption is best. Including an estimate of the drift of the overall ozone observing system decreases the significance of the trends. The significance will become clearer as (i) more years are added to the observational record, (ii) further improvements are made to the historic ozone record (e.g. through algorithm development), and (iii) the data merging techniques are refined, particularly through a more rigorous treatment of uncertainties. The support of SPARC, IO3C, IGACO-O3 and NDACC was essential to the success of the initiative. Neil Harris thanks the UK Natural Environment Research Council for an Advanced Research Fellowship. Work at the Jet Propulsion Laboratory was performed under contract with the National Aeronautics and Space Administration. Measurements at Lauder are core funded through New Zealand’s Ministry of Business, Innovation and Employment, while those at Woolongong are supported by the Australian Research Council
    corecore