7 research outputs found

    Metabolic adaptation of acute lymphoblastic leukemia to the central nervous system microenvironment depends on Stearoyl CoA desaturase

    Get PDF
    Metabolic reprogramming is a key hallmark of cancer, but less is known about metabolic plasticity of the same tumor at different sites. Here, we investigated the metabolic adaptation of leukemia in two different microenvironments, the bone marrow and the central nervous system (CNS). We identified a metabolic signature of fatty acid synthesis in CNS leukemia, highlighting stearoyl-CoA desaturase (SCD) as a key player. In vivo SCD overexpression increases CNS disease, whereas genetic or pharmacological inhibition of SCD decreases CNS load. Overall, we demonstrated that leukemic cells dynamically rewire metabolic pathways to suit local conditions and that targeting these adaptations can be exploited therapeutically

    The Polymer-Coated SAW Sensor as a Gravimetric Sensor

    No full text

    Central nervous system acute lymphoblastic leukemia: role of natural killer cells.

    No full text
    Central nervous system acute lymphoblastic leukemia (CNS-ALL) is a major clinical problem. Prophylactic therapy is neurotoxic, and a third of the relapses involve the CNS. Increased expression of interleukin 15 (IL-15) in leukemic blasts is associated with increased risk for CNS-ALL. Using in vivo models for CNS leukemia caused by mouse T-ALL and human xenografts of ALL cells, we demonstrate that expression of IL-15 in leukemic cells is associated with the activation of natural killer (NK) cells. This activation limits the outgrowth of leukemic cells in the periphery, but less in the CNS because NK cells are excluded from the CNS. Depletion of NK cells in NOD/SCID mice enabled combined systemic and CNS leukemia of human pre-B-ALL. The killing of human leukemia lymphoblasts by NK cells depended on the expression of the NKG2D receptor. Analysis of bone marrow (BM) diagnostic samples derived from children with subsequent CNS-ALL revealed a significantly high expression of the NKG2D and NKp44 receptors. We suggest that the CNS may be an immunologic sanctuary protected from NK-cell activity. CNS prophylactic therapy may thus be needed with emerging NK cell-based therapies against hematopoietic malignancies

    The ability to cross the blood-cerebrospinal fluid barrier is a generic property of acute lymphoblastic leukemia blasts

    Get PDF
    Prevention of central nervous system (CNS) relapse is critical for cure of childhood Bcell precursor acute lymphoblastic leukaemia (BCP-ALL). Despite this, mechanisms of CNS infiltration are poorly understood and the timing, frequency and properties of BCP-ALL blasts entering the CNS compartment are unknown. We investigated the CNS-engrafting potential of BCP-ALL cells xenotransplanted into immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice. CNS engraftment was seen in 23/29 diagnostic samples (79%), 2/2 from patients with overt CNS disease and 21/27 (78%) from patients thought to be CNS-negative by diagnostic lumbar puncture. Histological findings mimic human pathology and demonstrate that leukaemic cells primarily transit the blood-cerebrospinal-fluid barrier sitting in close proximity to the dural sinuses – the site of recently discovered CNS lymphatics. Retrieval of blasts from the CNS showed no evidence for chemokine receptor-mediated selective trafficking. The high frequency of infiltration and lack of selective trafficking led us to postulate that CNS tropism is a generic property of leukaemic cells. To test this we performed serial dilution experiments, CNS engraftment was seen in 5/6 mice following transplantation of as few as 10 leukaemic cells. Finally, clonal tracking techniques confirmed the polyclonal nature of CNS infiltrating cells with multiple clones engrafting in both the CNS and periphery. Overall, these findings suggest that sub-clinical seeding of the CNS is likely to be present in the majority of BCP-ALL patients at original diagnosis and efforts to prevent CNS relapse should concentrate on augmenting effective eradication of disease from this site, rather than targeting entry mechanisms
    corecore