940 research outputs found

    Can we always get the entanglement entropy from the Kadanoff-Baym equations? The case of the T-matrix approximation

    Full text link
    We study the time-dependent transmission of entanglement entropy through an out-of-equilibrium model interacting device in a quantum transport set-up. The dynamics is performed via the Kadanoff-Baym equations within many-body perturbation theory. The double occupancy <n^R↑n^R↓>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} >, needed to determine the entanglement entropy, is obtained from the equations of motion of the single-particle Green's function. A remarkable result of our calculations is that <n^R↑n^R↓>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} > can become negative, thus not permitting to evaluate the entanglement entropy. This is a shortcoming of approximate, and yet conserving, many-body self-energies. Among the tested perturbation schemes, the TT-matrix approximation stands out for two reasons: it compares well to exact results in the low density regime and it always provides a non-negative <n^R↑n^R↓>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} >. For the second part of this statement, we give an analytical proof. Finally, the transmission of entanglement across the device is diminished by interactions but can be amplified by a current flowing through the system.Comment: 6 pages, 6 figure

    Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbor Coupled Oscillators

    Full text link

    A multichannel reflectometer for edge density profile measurements at the ICRF antenna in ASDEX upgrade

    Get PDF
    A multichannel reflectometer will be built for the new three-straps ICRF antenna of ASDEX Upgrade (AUG), to study the density behavior in front of it. Ten different accesses to the plasma are available for the three reflectometer channels that can be interchanged without breaking the machine vacuum. Frequency is scanned from 40 GHz to 68 GHz, in 10 mu s, which corresponds to a cut-off density ranging from 10(18) divided by 10(19)m(-3) in the Right cut-off of the X-mode propagation, for standard toroidal magnetic field values of AUG

    Analyzing the success of T-matrix diagrammatic theories in representing a modified Hubbard model

    Full text link
    We present a systematic study of various forms of renormalization that can be applied in the calculation of the self-energy of the Hubbard model within the T-matrix approximation. We compare the exact solutions of the attractive and repulsive Hubbard models, for linear chains of lengths up to eight sites, with all possible taxonomies of the T-matrix approximation. For the attractive Hubbard model, the success of a minimally self-consistent theory found earlier in the atomic limit (Phys. Rev. B 71, 155111 (2005)) is not maintained for finite clusters unless one is in the very strong correlation limit. For the repulsive model, in the weak correlation limit at low electronic densities -- that is, where one would expect a self-consistent T-matrix theory to be adequate -- we find the fully renormalized theory to be most successful. In our studies we employ a modified Hubbard interaction that eliminates all Hartree diagrams, an idea which was proposed earlier (Phys. Rev. B 63, 035104 (2000)).Comment: Includes modified discussion of 1st-order phase transition. Accepted for publication in J. Phys.: Condensed Matte

    Physical properties of dense cores in Orion B9

    Full text link
    We aim to determine the physical and chemical properties of dense cores in Orion B9. We observed the NH3(1,1) and (2,2), and the N2H+(3-2) lines towards the submm peak positions. These data are used in conjunction with our LABOCA 870 micron dust continuum data. The gas kinetic temperature in the cores is between ~9.4-13.9 K. The non-thermal velocity dispersion is subsonic in most of the cores. The non-thermal linewidth in protostellar cores appears to increase with increasing bolometric luminosity. The core masses are very likely drawn from the same parent distribution as the core masses in Orion B North. Starless cores in the region are likely to be gravitationally bound, and thus prestellar. Some of the cores have a lower radial velocity than the systemic velocity of the region, suggesting that they are members of the "low-velocity part" of Orion B. The observed core-separation distances deviate from the corresponding random-like model distributions. The distances between the nearest-neighbours are comparable to the thermal Jeans length. The fractional abundances of NH3 and N2H+ in the cores are ~1.5-9.8x10^{-8} and ~0.2-5.9x10^{-10}, respectively. The NH3 abundance appears to decrease with increasing H2 column and number densities. The NH3/N2H+ column density ratio is larger in starless cores than in cores with embedded protostars. The core population in Orion B9 is comparable in physical properties to those in nearby low-mass star-forming regions. It is unclear if the origin of cores could be explained by turbulent fragmentation. On the other hand, many of the core properties conform with the picture of dynamic core evolution. The Orion B9 region has probably been influenced by the feedback from the nearby Ori OB 1b group, and the fragmentation of the parental cloud into cores could be caused by gravitational instability.Comment: 17 pages, 11 figures, 7 tables. Accepted for publication in Astronomy and Astrophysics. Version 2: minor language corrections adde
    • …
    corecore