198 research outputs found
Scattering of solitary waves in granular media
A detailed numerical study of the scattering of solitary waves by a barrier,
in a granular media with Hertzian contact, shows the existence of secondary
multipulse structures generated at the interface of two "sonic vacua", which
have a similar structure as the one previously found by Nesterenko and
coworkers.Comment: 4 pages, 9 figures (fig 5, replaced). Submitted to PR
A Study Of A New Class Of Discrete Nonlinear Schroedinger Equations
A new class of 1D discrete nonlinear Schrdinger Hamiltonians
with tunable nonlinerities is introduced, which includes the integrable
Ablowitz-Ladik system as a limit. A new subset of equations, which are derived
from these Hamiltonians using a generalized definition of Poisson brackets, and
collectively refered to as the N-AL equation, is studied. The symmetry
properties of the equation are discussed. These equations are shown to possess
propagating localized solutions, having the continuous translational symmetry
of the one-soliton solution of the Ablowitz-Ladik nonlinear
Schrdinger equation. The N-AL systems are shown to be suitable
to study the combined effect of the dynamical imbalance of nonlinearity and
dispersion and the Peierls-Nabarro potential, arising from the lattice
discreteness, on the propagating solitary wave like profiles. A perturbative
analysis shows that the N-AL systems can have discrete breather solutions, due
to the presence of saddle center bifurcations in phase portraits. The
unstaggered localized states are shown to have positive effective mass. On the
other hand, large width but small amplitude staggered localized states have
negative effective mass. The collison dynamics of two colliding solitary wave
profiles are studied numerically. Notwithstanding colliding solitary wave
profiles are seen to exhibit nontrivial nonsolitonic interactions, certain
universal features are observed in the collison dynamics. Future scopes of this
work and possible applications of the N-AL systems are discussed.Comment: 17 pages, 15 figures, revtex4, xmgr, gn
Korn's second inequality and geometric rigidity with mixed growth conditions
Geometric rigidity states that a gradient field which is -close to the
set of proper rotations is necessarily -close to a fixed rotation, and is
one key estimate in nonlinear elasticity. In several applications, as for
example in the theory of plasticity, energy densities with mixed growth appear.
We show here that geometric rigidity holds also in and in
interpolation spaces. As a first step we prove the corresponding linear
inequality, which generalizes Korn's inequality to these spaces
Asymptotic stability of breathers in some Hamiltonian networks of weakly coupled oscillators
We consider a Hamiltonian chain of weakly coupled anharmonic oscillators. It
is well known that if the coupling is weak enough then the system admits
families of periodic solutions exponentially localized in space (breathers). In
this paper we prove asymptotic stability in energy space of such solutions. The
proof is based on two steps: first we use canonical perturbation theory to put
the system in a suitable normal form in a neighborhood of the breather, second
we use dispersion in order to prove asymptotic stability. The main limitation
of the result rests in the fact that the nonlinear part of the on site
potential is required to have a zero of order 8 at the origin. From a technical
point of view the theory differs from that developed for Hamiltonian PDEs due
to the fact that the breather is not a relative equilibrium of the system
Nonlinear weakly curved rod by Γ-Convergence
We present a nonlinear model of weakly curved rod, namely the type of curved rod where the curvature is of the order of the diameter of the cross-section. We use an approach analogous to the one for rods and curved rods and start from the strain energy functional of three dimensional nonlinear elasticity. We do not impose any constitutional behavior of the material and work in a general framework. To derive the model, by means of Γ-convergence, we need to set the order of strain energy (i.e., its relation to the thickness of the body h). We analyze the situation when the strain energy (divided by the order of volume) is of the order h 4. This is the same approach as the one used in Föppl-von Kármán model for plates and the analogous model for rods. The obtained model is analogous to Marguerre-von Kármán for shallow shells and its linearization is the linear shallow arch model which can be found in the literature
Translationally invariant nonlinear Schrodinger lattices
Persistence of stationary and traveling single-humped localized solutions in
the spatial discretizations of the nonlinear Schrodinger (NLS) equation is
addressed. The discrete NLS equation with the most general cubic polynomial
function is considered. Constraints on the nonlinear function are found from
the condition that the second-order difference equation for stationary
solutions can be reduced to the first-order difference map. The discrete NLS
equation with such an exceptional nonlinear function is shown to have a
conserved momentum but admits no standard Hamiltonian structure. It is proved
that the reduction to the first-order difference map gives a sufficient
condition for existence of translationally invariant single-humped stationary
solutions and a necessary condition for existence of single-humped traveling
solutions. Other constraints on the nonlinear function are found from the
condition that the differential advance-delay equation for traveling solutions
admits a reduction to an integrable normal form given by a third-order
differential equation. This reduction also gives a necessary condition for
existence of single-humped traveling solutions. The nonlinear function which
admits both reductions defines a two-parameter family of discrete NLS equations
which generalizes the integrable Ablowitz--Ladik lattice.Comment: 24 pages, 4 figure
Moving lattice kinks and pulses: an inverse method
We develop a general mapping from given kink or pulse shaped travelling-wave
solutions including their velocity to the equations of motion on
one-dimensional lattices which support these solutions. We apply this mapping -
by definition an inverse method - to acoustic solitons in chains with nonlinear
intersite interactions, to nonlinear Klein-Gordon chains, to reaction-diffusion
equations and to discrete nonlinear Schr\"odinger systems. Potential functions
can be found in at least a unique way provided the pulse shape is reflection
symmetric and pulse and kink shapes are at least functions. For kinks we
discuss the relation of our results to the problem of a Peierls-Nabarro
potential and continuous symmetries. We then generalize our method to higher
dimensional lattices for reaction-diffusion systems. We find that increasing
also the number of components easily allows for moving solutions.Comment: 15 pages, 5 figure
Symmetry-Adapted Phonon Analysis of Nanotubes
The characteristics of phonons, i.e. linearized normal modes of vibration,
provide important insights into many aspects of crystals, e.g. stability and
thermodynamics. In this paper, we use the Objective Structures framework to
make concrete analogies between crystalline phonons and normal modes of
vibration in non-crystalline but highly symmetric nanostructures. Our strategy
is to use an intermediate linear transformation from real-space to an
intermediate space in which the Hessian matrix of second derivatives is
block-circulant. The block-circulant nature of the Hessian enables us to then
follow the procedure to obtain phonons in crystals: namely, we use the Discrete
Fourier Transform from this intermediate space to obtain a block-diagonal
matrix that is readily diagonalizable. We formulate this for general Objective
Structures and then apply it to study carbon nanotubes of various chiralities
that are subjected to axial elongation and torsional deformation. We compare
the phonon spectra computed in the Objective Framework with spectra computed
for armchair and zigzag nanotubes. We also demonstrate the approach by
computing the Density of States. In addition to the computational efficiency
afforded by Objective Structures in providing the transformations to
almost-diagonalize the Hessian, the framework provides an important conceptual
simplification to interpret the phonon curves.Comment: To appear in J. Mech. Phys. Solid
On the commutability of homogenization and linearization in finite elasticity
We study non-convex elastic energy functionals associated to (spatially)
periodic, frame indifferent energy densities with a single non-degenerate
energy well at SO(n). Under the assumption that the energy density admits a
quadratic Taylor expansion at identity, we prove that the Gamma-limits
associated to homogenization and linearization commute. Moreover, we show that
the homogenized energy density, which is determined by a multi-cell
homogenization formula, has a quadratic Taylor expansion with a quadratic term
that is given by the homogenization of the quadratic term associated to the
linearization of the initial energy density
- …