6 research outputs found

    Quantification of the mechanical stress exerted by pumps on mammalian cells using an emulsion as a non-biological model system

    No full text
    Zur Quantifizierung der Beanspruchung durch die Zentrifugalpumpe PuraLev® 200SU wurde der mittlere Sauter-Durchmesser des Modellsystems Emulsion in Abhängigkeit des massenspezifischen Leistungseintrages ermittelt. Anschließend wurde mit ausgewählten Parametern die Absterberate von CHO-Zellen untersucht und mit den Ergebnissen der Emulsionsversuche verglichen. Es konnte gezeigt werden, dass für das biologische System neben dem Leistungseintrag weitere Parameter wie die Impellerumfangsgeschwindigkeit Einfluss auf die Partikelbeanspruchung haben

    A parallel optical interconnect link with on-chip optical access

    No full text
    This paper describes a complete technology family for parallel optical interconnect systems. Key features are the two-dimensional on-chip optical access and the development of a complete optical pathway. This covers both chip-to-chip links on a single boards, chip-to-chip links over an optical backpanel, and even system-to-system interconnects. Therefore it is a scalable technology. The design of all parts of the link, and the integration of parallel optical interconnect systems in the design flow of electronic systems is presented in this paper

    Adaptive filtering methods for identifying cross-frequency couplings in human EEG.

    Get PDF
    Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations

    DO-HEALTH: Vitamin D3 - Omega-3 - Home exercise - Healthy aging and longevity trial - Design of a multinational clinical trial on healthy aging among European seniors

    No full text

    Literatur

    No full text
    corecore