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Abstract

Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous,
induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a
prominent mechanism for information processing within and communication between brain areas. More recently, it has
been proposed that interactions between periodic components at different frequencies, known as cross-frequency
couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study
details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis
of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency,
which is particularly important when measuring phase interactions between components. We compared this adaptive
approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency
couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an
illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two
desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and
oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved
sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings.
This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears
to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.
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Introduction

Oscillatory activity is a key component of brain dynamics and

has increasingly been the focus of neuroscientific research.

Neuronal oscillations have been considered a possible mechanism

through which internal states exercise top-down influences on

stimulus processing to impact perception [1,2]. In particular, the

phase synchronization of oscillatory components seems to be

relevant for many cognitive processes [3]. Different models have

been proposed for explaining the role of neural synchronization.

For instance, the ‘‘communication through coherence’’ model [4]

suggests that phase synchronization is a binding mechanism

through which communication between different cortical areas is

established. Another model proposes that phase synchronization

facilitates neuronal plasticity [5]. Other studies [6,7] consider that

large-scale integration of perception into a unified representation is

supported by neural synchronization. Therefore, synchronization

of neuronal oscillations is considered a key mechanism for solving

the problem of binding multiple and/or distributed representa-

tions. Moreover, this mechanism not only encompasses interac-

tions between different cortical areas but also interactions between

classical neuronal frequency bands; so-called cross-frequency

couplings [8]. These cross-frequency couplings have been

proposed as a framework for unifying the neuronal oscillations

at different temporal and spatial scales [9]. The importance of

these coupling processes have been demonstrated in recent studies

of motor, sensory and cognitive tasks (e.g. [10–17]).

The reliability of methods for identifying these interactions

across frequency bands can be examined using the well-known

illusory contour (IC) stimuli [18]. Investigators have considered

this paradigm as exemplary of the binding problem because

physically absent borders of an object must be ‘‘filled-in’’ (at least

perceptually if not also neurophysiologically) between inducers.

One consistent observation is increased gamma power for IC vs.

control stimuli (e.g. [19–21]). Another highly replicable finding is

stronger global field power in the ERP to the presence vs. absence

of ICs (e.g. [22–26]). The case of IC processing thus exemplifies a

situation where the relationship between effects observed using

analyses of event-related potentials (ERPs; which are heavily

influenced by lower-frequency oscillations below ,25 Hz) and

those obtained using time-frequency analyses (which typically

focus on higher-frequency oscillations above ,25 Hz) remains to

be detailed and ultimately conjoined (e.g. [27]). Moreover and

despite being the subject of neuroscientific investigation spanning
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several decades in both humans and animal models, controversy

persists regarding whether ICs are the result of bottom-up vs. top-

down mechanisms (e.g. [26]). These kinds of results highlight the

need for signal processing methods that can detail relationships

between extracted features in a statistically sound manner.

Neural synchronization underlying cross-frequency couplings

has been studied with a large number of different tools. In

particular, methods based on phase information, such as phase

locking value [28,29], have been applied to EEG data. Moreover,

it has been shown recently that phase can encode more

information than power [30], and thus such methods are well-

suited to analyze cross-frequency interactions. The phase infor-

mation is typically extracted with the widely-used Hilbert

transform [31], but it should be considered with caution. The

extracted phase is guaranteed to be physically meaningful only for

narrow-band signals [32], and thus phase interpretation is

problematic for broad-band signals. It should be noted that this

interpretation problem arises with any technique for phase

extraction. Consequently, the phase locking value is sensitive to

broad-band interference [33]. A straightforward solution to this

problem consists of adding a pre-processing step that separates

EEG data into various narrow frequency bands with band-pass

filters or wavelet analysis. Although this filter-bank approach can

lead to more reliable analyses of cross-frequency couplings [10], it

has a major disadvantage. The specifications of the filters (e.g. cut-

off frequencies, attenuation, etc.) are predefined without taking

into account the dynamics of the EEG signal under investigation.

Therefore, an oscillatory component whose instantaneous fre-

quency crosses the limit between two bands would be considered

as two different oscillations occurring successively. In such cases it

would be preferable to apply adaptive methods that can track a

periodic component with a time-varying instantaneous frequency

in a continuous manner. We recently proposed such a technique

[34,35] in which a time-varying band-pass filter is adapted over

time in order to extract an oscillation and its instantaneous

frequency.

In this study, we used such adaptive filters for analyzing the

evolution of phase-amplitude and phase-phase couplings in

response to the presence vs. absence of ICs. Although we still

relied on predefined band-pass filters for separating the signals into

various frequency bands, we chose wider filters than the ones

typically used for processing EEG data. The following step was to

retrieve the main oscillatory component and its instantaneous

frequency in each band with our adaptive frequency tracking

scheme. Thus, we obtained narrow band signals from which we

could precisely extract the phase information, which, in turn, was

used for measuring phase-amplitude and phase-phase coupling

strength over time. The complete procedure is summarized in

Figure 1. In more detail, we tested three aspects of cross-frequency

couplings during IC perception. First, we checked that stimuli with

and without IC elicited a change in terms of coupling strength by

using surrogate stationary signals generated from the original EEG

data. This analysis assessed if the two types of stimuli caused a

response before conducting further tests. Second, we contrasted

the responses to stimuli with IC to the ones without such contours.

One goal of this study was to determine if ICs elicited specific

changes in terms of coupling strength. Last, we compared the

results obtained with and without adaptive frequency tracking in

order to highlight the value of our algorithm for precisely

extracting the phase information and measuring cross-frequency

couplings. Synthetic signals were also used for showing the

advantages of frequency tracking. Specifically, classical approaches

were compared to tracking for measuring cross-frequency

couplings with such signals. Compared to our previous study

which presented the algorithm for adaptive frequency tracking and

possible applications in EEG data processing [35], the present

study constitutes a more thorough analysis at a group-level as well

as dynamic analysis of instantaneous frequency and cross-

frequency couplings following IC presentation.

Materials and Methods

Experimental Setup
The present study is a re-analysis of a subset of data appearing

in a previously published study that focused on broad-band ERPs

in response to IC stimuli [22]. Full details regarding the

experimental setup can be obtained from the original study. Here,

we provide only the essentials.

The participants in the present study included nine healthy

adults (seven men and two women), aged 22–47 years (mean 6

SD = 34610 years). Seven of the participants were right-handed

and two left-handed according to Edinburgh inventory [36]. All

procedures involved in the original data acquisition were approved

by the Institutional Review Board of the Nathan Kline Institute for

Psychiatric Research. All participants provided written informed

consent.

Participants viewed arrays of ‘‘pac-men’’ inducers presented in

either of two orientations. In the illusory contour (IC) condition,

the inducers were turned in order to produce the illusory

perception of a simple geometric shape. On the contrary, in the

no contour (NC) condition, the inducers were rotated 180u
outwards; this prevented any illusory perception with the same

luminance and contrast. Examples of the two conditions are

shown in Figure 2. Each stimulus appeared for 500 ms, followed

for 1000 ms by a blank screen. A Yes/No response prompt

appeared then and remained visible until a decision was made,

allowing subjects to control stimulus presentation. Subjects pressed

a button for ‘‘Yes’’ when they perceived an illusory shape and a

second button for ‘‘No’’ when it was not the case. The response

was followed by a blank screen for 1000 ms. The response prompt

was used to clearly separate the sensory response from the motor

response.

Figure 1. Processing steps used for analyzing the EEG data. The
same features were extracted before and after frequency tracking in
order to assess the usefulness of the proposed adaptive algorithm.
doi:10.1371/journal.pone.0060513.g001
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Data Acquisition and Pre-processing
Continuous EEG was recorded through a Neuroscan Synamp

from 64 scalp electrodes (impedances #5 kV), referenced to the

nose, band-pass filtered from 0.05 Hz to 100 Hz, and sampled at

500 Hz. Trials for each subject and condition were visually

selected with the Cartool software by Denis Brunet (http://sites.

google.com/site/fbmlab/cartool/) [37]. A threshold of 680 mV

for artifact rejection was used. Each trial represented 2000 ms of

EEG data, with stimulus onset after 500 ms. There were an

average (6 SD) of 300 (657) EEG trials from the IC condition and

295 (643) trials from the NC condition included in the analyses.

Once the trials were extracted, all further processing was

performed in Matlab.

First, the EEG signals recorded from a cluster of five electrodes

(P2, P4, P6, PO4 and PO6) were selected. This selection was based

on the right-lateralized posterior scalp distribution of the ERP

difference between IC and NC conditions (cf. Figure 3 in [22]).

Then, signals from these electrodes were re-sampled from 500 Hz

to 250 Hz and the power line interference at 60 Hz was canceled

with a narrow notch filter. (The original recordings were

performed at the Nathan Kline Institute for Psychiatric Research

in Orangeburg, New York, USA.) The spatial mean of the five

electrodes was computed in order to obtain a slightly more global

view. Due to the proximity of the selected electrodes, the

corresponding EEG signals were almost identical. The signals

obtained after spatial averaging were then filtered in the following

frequency bands: 1–4 Hz, 4–8 Hz, 8–12 Hz, 15–25 Hz, 35–

45 Hz, 45–55 Hz, 55–65 Hz and 65–75 Hz. It is important to

mention that the signals were filtered in both forward and reverse

directions in order to achieve zero-phase distortion [38].

Consequently, the samples at the beginning and at the end should

be considered with caution as they were susceptible to transients

and border effects. Once the band-pass signals were obtained, we

applied the adaptive frequency tracking scheme that we recently

proposed [34,35] in order to extract the main oscillation in each

band as well as its estimated instantaneous frequency.

This adaptive scheme is called the single frequency tracker

(SFT). It has been developed in the complex-valued signal

framework, and thus it must be applied to the analytic

representation of the input signal. This representation can be

obtained with the discrete Hilbert transform [39]. A real output

signal can always be recovered by keeping only the real part. The

SFT is based on an adaptive band-pass filter whose transfer

function is defined as follows,

H(z; n)~
1{b

1{bejv(n)z{1
, ð1Þ

where j is the imaginary unit, n denotes the discrete time, z is the

variable from the Z-transform, b (0%bv1) determines the

bandwidth and v(n) is the instantaneous frequency estimate that

controls the central frequency. This filter has unit gain and zero

phase at v(n) which is of the utmost importance for measuring

coupling based on phase information. The frequency estimate is

computed recursively using the following equations:

y(n)~bejv(n)y(n{1)z(1{b)x(n), ð2Þ

Q(n)~dQ(n{1)z(1{d)y(n)�yy(n{1), ð3Þ

v(nz1)~ argfQ(n)g, ð4Þ

where x(n) and y(n) are the input and output signals, Q(n) is an

internal variable, d (0%dv1) is a forgetting factor that controls the

convergence rate and the upper bar denotes complex conjugation.

This adaptive scheme extracts the main oscillation in a given signal

and estimates its instantaneous frequency. In this study, the input

signal was one of the band-pass filtered EEG signals, while the

output signal was the corresponding extracted neuronal oscillation.

To summarize the pre-processing, we computed the spatial

average of a cluster of five electrodes, then the signals were

separated into various frequency bands with fixed band-pass

filters, and finally we applied the SFT in order to extract the main

oscillation and its instantaneous frequency in each band with a

narrow time-varying band-pass filter. We selected the following

values for the parameters of the tracking scheme: b~0:975 (this

corresponds approximately to a 3 dB bandwidth of 2 Hz),

d~0:95, and the initial frequency was set to the center of the

considered frequency band. The selected values for b and d
offered a good trade-off between adaptation speed and accurate

oscillation extraction. It is also worth mentioning that small

variations around these values should affect the results only

marginally. For proper initialization of the internal variable, we

applied the SFT to longer signals obtained by adding the mirrored

first 500 ms at the beginning. The input and outputs of the SFT

are illustrated in Figure 3 with an EEG signal filtered in the 35–

Figure 2. Experimental conditions. IC condition (left), NC condition
(right).
doi:10.1371/journal.pone.0060513.g002

Figure 3. Pre-processing steps. EEG signal filtered in the 35–45 Hz
band (top), oscillation extracted with the SFT (middle), and its estimated
instantaneous frequency (bottom). The estimated frequency is plotted
on top of the short-time Fourier transform of the EEG signal. The
vertical dashed lines denote stimulus onset.
doi:10.1371/journal.pone.0060513.g003
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45 Hz band. It is possible to see that the tracking is not immediate,

because the adaptation introduces a slight delay. Finally, we

obtained one oscillatory component and its estimated instanta-

neous frequency for each frequency band.

In order to assess the presence or absence of phenomena,

surrogate EEG signals were generated from the original data

[40,41]. This was done as follows: (1) an EEG signal was

transformed into the frequency domain with the discrete Fourier

transform, (2) then the amplitudes were kept but the phases were

randomized (random variables drawn from a uniform distribution

between 0 and 2p), (3) finally the modified signal was transformed

back into the time domain. The phase randomization destroys the

structure in the input signal and yields a more stationary output.

However, the surrogate signal shares some properties with the

original one, such as probability density function and autocorre-

lation. Thus, they have also the same power spectral density. This

surrogate approach can help to highlight non-stationary effects,

like stimulus-locked responses. This operation was repeated in

order to obtain one surrogate signal for each EEG signal. Then,

the same pre-processing was applied to the surrogate signals (fixed

band-pass filtering and adaptive frequency tracking). Therefore,

we obtained two datasets: a real dataset (corresponding to the real

EEG signals) and a surrogate dataset. An example of surrogate

signal is shown in Figure 4. One can observe that although the real

and surrogate signals are different, they have the same amplitude

spectrum.

Features
Once the pre-processing was applied to all EEG signals (real

and surrogate ones), three different features were investigated.

They were used for highlighting differences between real and

surrogate datasets as well as between the two conditions used in

the experiment (IC and NC). They also permitted to assess the

usefulness of the SFT, as the same features were computed before

and after frequency tracking. The features were computed on

sliding windows of length 300 ms which offered a good trade-off

between temporal resolution and estimation accuracy. The time

shift between successive windows was set to 10 ms. Sliding

windows were used in order to visualize the evolution of the

features over time. The complete procedure for extracting the

features from the spatial-averaged EEG signals is depicted in

Figure 1. We focused on three features: the mean instantaneous

frequency estimated by the SFT, the phase-amplitude and phase-

phase couplings. All details regarding the computation of these

figures are provided in the following sections.

Mean Frequency. The first feature that we considered was

the mean estimated instantaneous frequency, based on the

estimate provided by the SFT. Although we mostly focused on

cross-frequency couplings, the mean frequency was also investi-

gated as it was readily available thanks to the SFT. Also, this kind

of feature was rarely analyzed in this context. It is important to

notice that this feature could not be computed without adaptive

frequency tracking.

Phase-amplitude Couplings. Phase-amplitude couplings

were measured with the phase locking value (PLV) [29]. The

PLV is computed using the phase of the low frequency component

wlf (n) and the phase of the amplitude of the high frequency

component wahf
(n):

PPA~ E e
j wlf (n){wahf

(n)

� �( )�����
�����: ð5Þ

The phases and amplitudes were extracted with the Hilbert

transform. The PLV takes a value of one for perfectly

synchronized signals and zero when there is no synchronization.

In practice, the expectation was replaced by the sample mean.

Phase-phase Couplings. Phase-phase couplings were also

measured with the PLV. However, this measure was slightly

modified in order to take into account oscillatory components with

different frequencies [28]. It is defined as follows for measuring

phase-phase couplings:

PPP~ E ej awlf (n){bwhf (n)ð Þ
n o��� ���, ð6Þ

where a and b are coupling coefficients. The following values for

a:b were considered: 4:3, 3:2, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1 and

9:1. Only the PLVs for which the frequency bands and coupling

coefficients made sense were computed (i.e. bands that overlapped

once multiplied by the corresponding coupling coefficients). For

instance, when measuring the phase-phase couplings between 1–

4 Hz and 35–45 Hz components, the coupling coefficients 2:1

were discarded. Indeed, multiplying the limits of each band with

the corresponding coefficient yields 2–8 Hz and 35–45 Hz which

do not overlap. As for the phase-amplitude couplings, the

expectation was replaced by the sample mean.

Statistical Analysis. Once the three features were computed

over all sliding windows, we performed statistical tests in order to

display significant differences between real and surrogate datasets

or IC and NC conditions. However, before applying the tests, the

features were transformed into approximately Gaussian variables

whenever necessary. This was not needed for the mean frequency

due to the central limit effect [42]. By contrast, the PLV values for

both phase-amplitude and phase-phase couplings were trans-

formed into approximately Gaussian random variables with an

arcsine transform (ZPA=PP~ arcsin (2PPA=PP{1)) [43]. Finally,

analysis of variance (ANOVA) was performed with ‘‘subject’’ as a

random effect and ‘‘dataset’’ or ‘‘condition’’ as a fixed effect for the

101 windows whose centers were located in the interval 0–

1000 ms following stimulus presentation. We considered only the

p-value for the fixed effect. As many tests were performed for each

Figure 4. Original and surrogate EEG signals. Real EEG signal (top
left), surrogate signal (bottom left), amplitude spectrum of the real
signal (top right), amplitude spectrum of the surrogate signal (bottom
right). Vertical dashed lines denote stimulus onset.
doi:10.1371/journal.pone.0060513.g004
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feature which could lead to several type I errors, an effect was

declared significant only when the ANOVA yielded a p-value

below 5% for some number of successive windows. Furthermore,

we used permutation tests [44] to compute a lower bound for this

number of successive significant windows in order to achieve a

final p-value below 5%. These tests were performed by repeating

1000 times the ANOVA with randomly permuted dataset or

condition memberships. In other words, the features computed on

sliding windows were randomly reassigned to either of the datasets

or conditions while keeping the true subjects’ assignments and the

natural temporal order of the windows so as to preserve the

correlation structure. The p-values for all windows were then

computed with the ANOVA, and the maximum number of

successive significant windows (p,0.05) was evaluated for the

1000 repetitions. Thus, we could estimate the distribution of the

maximum number of successive significant windows under the

hypothesis of no difference between the datasets or conditions.

And therefore, we could compute an estimate of the probability of

observing a number of successive significant windows equal to or

greater than the one obtained with the true assignment of datasets

or conditions when assuming no difference between these datasets

or conditions. This probability estimate is in fact the p-value for

the number of successive significant windows for the feature under

investigation. In practice, we declared a difference significant only

when this p-value was below 5% and the ANOVA rejected the

null hypothesis for at least 4 successive windows. The latter

condition ensured that the observed difference was not only

punctual.

Synthetic Signals
The usefulness of the SFT for measuring cross-frequency

couplings was also evaluated with synthetic signals and Monte

Carlo simulations. We considered two cases: a basic case with

sinusoids with additive noise and a more complex case in which

synthetic signals were generated in order to mimic a real EEG

signal. In the first case, the goal was to measure the phase-phase

couplings with the PLV between two simple signals. The input

signals were defined as two sinusoids at normalized frequencies

0.05 and 0.35 with uniformly distributed phases embedded in

independent white Gaussian noises:

2x1(n)~ sin (2p0:05nzh1)zv1(n), n~0,1, . . . ,1074, ð7aÞ

x2(n)~
1

3
sin (2p0:35nzh2)zv2(n),n~0,1, . . . ,1074, ð7bÞ

where h1 and h2 were the random phase terms uniformly

distributed between 0 and 2p, and v1(n) and v2(n) were the

additive white Gaussian noises. The random phase terms and

noises were mutually independent. The 1/3 factor was used to

take into account the power decrease in higher frequencies in EEG

data. Then, the SFT was applied for extracting the oscillatory

component in each signal. The parameters of the adaptive

algorithm were set to b~0:975 and d~0:95. The phases of input

and output signals were extracted with the discrete Hilbert

transform. The first and last 500 samples were then discarded in

order to avoid any border effect. This yielded 75-samples phase

signals whose length corresponded to the length of the 300-ms

windows at 250 Hz used in the EEG analysis. Finally, the PLV

was computed with coupling coefficients set to 7:1 (ratio of the

frequencies: 0:35=0:05~7=1) for the phase signals obtained with

and without frequency tracking. The PLV mean and standard

deviation were estimated with 10,000 Monte Carlo simulations for

the two approaches. In each repetition, new random values for h1,

h2, v1(n) and v2(n) were generated. Furthermore, this procedure

was repeated for SNR values ranging from 0 to 20 dB in 1 dB

steps. It is important to note that without noise the PLV for these

signals should be equal to one.

In the second case, we generated two 500-samples signals

mimicking the outputs of the band-pass filters used when analyzing

the real EEG data. The sampling frequency for these two synthetic

signals was set to 250 Hz which corresponded to a duration of

2000 ms. The first signal was defined as

2x1(n)~5A(n) sin 2p
5:5

250
nzh1

� �
z

v1(n), n~0,1, . . . ,499,

ð8aÞ

and the second one as

x2(n)~2A(n) sin 2p
44

250
nzh2

� �
zu(n)zv2(n),n~0,1, . . . ,499,

ð8bÞ

where h1 and h2 were random phase terms uniformly distributed

between 0 and 2p, v1(n) and v2(n) were additive white Gaussian

noises with variances 25 and 4 respectively, A(n) was the time-

varying amplitude of the sinusoids and u(n) was a periodic

interference at 36 Hz. They were set to

A(n)~

0:2 for 0ƒnv125,

0:2z0:8(n{125)=25 for 125ƒnv150,

1 for 150ƒnv350,

1{0:8(n{350)=25 for 350ƒnv375,

0:2 for 375ƒnv500,

0
BBBBBB@

ð9Þ

and

u(n)~

0 for 0ƒnv125,

3g(n{125) sin (2p(36=250)nzh3) for 125ƒnv375,

0 for 375ƒnv500,

0
B@ ð10Þ

where g(n) is a 250-samples Hann window [38] and h3 is a

random phase term uniformly distributed between 0 and 2p. As in

the first case, the phase terms and noises were mutually

independent. The first signal was then filtered in the 4–8 Hz

band and the second one in the 35–45 Hz band with the same

fixed band-pass filters used before. All the parameters were chosen

in order to generate synthetic signals inspired by a real EEG signal

with stable oscillatory components at 5.5 and 44 Hz and a short

periodic interference at 36 Hz. The SFT was applied to both

signals for extracting the main periodic components with the same

parameters and mirroring procedure as for the real EEG data.

The phase-phase couplings were then measured by computing the

PLV with coupling coefficients 8:1 over sliding windows of length

300 ms shifted by 10 ms. The results obtained with and without

tracking were averaged over 10,000 realizations of the random

phases and noises. In this synthetic example, there should be an

Adaptive Methods for Identifying Couplings in EEG
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increase in coupling strength when n is between 150 and 350

samples (600–1400 ms).

Results

Synthetic Signals
Before presenting the results obtained with the signals recorded

during the IC experiment, we present the outcomes of the Monte

Carlo simulations with synthetic signals. The mean PLVs with

error bars obtained with the first set of signals are shown in

Figure 5 for all tested SNR values. Without noise the PLV should

be equal to one in this scenario as the two oscillatory components

were perfectly synchronized with 7:1 coefficients. This was indeed

the case for very low noise levels. However, without adaptive

tracking, the mean PLV quickly decreased as the noise variance

increased. This decrease was quite severe even for moderate noise

levels. By contrast, the SFT led to PLV values that were much

more resilient to noise, at the cost of ed estimation variance

however. Nevertheless, the SFT increased the overall performance

of the PLV for measuring phase-phase couplings with these

synthetic signals. Indeed, although the PLV variance was higher

with tracking, the mean PLV obtained without tracking reached its

minimal value for SNR values below 5 dB. In the second case,

where synthetic signals were generated so as to imitate real EEG

data, the SFT also proved to be helpful for measuring phase-phase

couplings. These signals contained two perfectly synchronized

sinusoids with 8:1 coefficients embedded in noise. An interfering

periodic component active during a short duration was also

present in the high-frequency signal. The two sinusoids had time-

varying amplitudes that reached their maximal values in the

interval 600–1400 ms. And thus, the PLV computed over 300-ms

sliding windows shifted by 10 ms should increase in this interval.

The results averaged over 10,000 Monte Carlo simulations are

shown in Figure 6 with and without frequency tracking. Without

tracking, the PLV increased in the beginning of the interval as

expected, but it was then completely disrupted by the interfering

oscillation. In the end of the interval, it increased again as the

amplitude of the interference dropped. On the contrary, the PLV

values obtained with the SFT were higher during the whole

duration of the interval, except for an adaptation delay (,150 ms).

Therefore, with these synthetic signals, meaningful phase infor-

mation could be extracted thanks to the proposed adaptive

algorithm which led to robust PLV values. In particular, the first

example showed its tolerance to broad-band noise, while the

second one showed its resilience to interfering oscillations.

Mean Frequency
The comparisons between the real and surrogate datasets

yielded significant differences in terms of mean frequency for the

1–4 Hz component in the interval 180–380 ms (21 successive

windows, permutation test: p,0.001) and the 4–8 Hz component

in the interval 200–380 ms (19 successive windows, permutation

test: p,0.001). In both cases, the estimated instantaneous

frequency was higher for the real data than for the surrogate

ones. This is illustrated in Figure 7. It seems that the mean

frequency of the main oscillatory component in the band 1–4 Hz

increased smoothly following stimulus presentation for the two

datasets. However, this frequency increase was more important in

the real data. The phenomenon was slightly different for the 4–

8 Hz band. Indeed, in this case, the main frequency remained

almost constant for the surrogate dataset. By contrast, an increase

in mean frequency after stimulus presentation for the real dataset

caused the significant difference. There was no other significant

difference between the two datasets for this feature.

As significant differences in mean frequency were observed

between the real and surrogate datasets, we also compared the IC

and NC conditions with respect to this feature. We obtained

significant differences between the two conditions for the

instantaneous frequency of the components in the 4–8 Hz and

45–55 Hz bands. These two comparisons are shown in Figure 8.

The frequency was significantly higher for IC than for NC for the

4–8 Hz component in the interval 230–610 ms (39 successive

windows, permutation test: p,0.001). The frequency increase

following stimulus presentation was more pronounced and lasted

longer for IC than for NC. By contrast, IC yielded a lower mean

frequency than NC for the 45–55 Hz component. This difference

was significant in the interval 680–920 ms (25 successive windows,

permutation test: p,0.05). In this case, the frequency decreased

more than 500 ms after stimulus for IC while it increased for NC.

No other significant difference between the conditions was

observed in terms of frequency.

Figure 5. PLV values for the first synthetic example. The mean
PLV values obtained with and without adaptive frequency tracking are
shown with corresponding error bars for SNR values ranging from 0 to
20 dB in 1 dB steps.
doi:10.1371/journal.pone.0060513.g005

Figure 6. PLV values for the second synthetic example. The
mean PLV values were measured over 300-ms sliding windows.
doi:10.1371/journal.pone.0060513.g006
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Phase-amplitude Couplings
Several combinations of components yielded significant differ-

ences after stimulus onset in phase-amplitude couplings when

comparing real and surrogate datasets. Most of the significant

results were obtained when the 4–8 Hz component was involved.

A significant decrease in coupling strength was observed after

stimulus presentation for the real dataset compared to the

surrogate one when the 4–8 Hz component was considered as

the low frequency component. By contrast, an increase was

obtained with the components from the 1–4 Hz and 4–8 Hz

bands. All these results involving the 4–8 Hz component are

summarized in Figure 9. Furthermore, two examples of compar-

isons between the real and surrogate datasets in terms of phase-

amplitude couplings are shown in Figure 10 for the combinations

1–4 Hz and 4–8 Hz as well as 4–8 Hz and 35–45 Hz. Other

significant results were obtained with the following pairs of

components: 1–4 Hz and 8–12 Hz in the interval 170–320 ms

(real . surrogate, 16 successive windows, permutation test:

p,0.001), 1–4 Hz and 15–25 Hz in the interval 190–420 ms

(real . surrogate, 24 successive windows, permutation test:

p,0.001), 1–4 Hz and 55–65 Hz in the interval 220–340 ms

(real . surrogate, 13 successive windows, permutation test:

p,0.01), 8–12 Hz and 15–25 Hz in the interval 90–280 ms (real

, surrogate, 20 successive windows, permutation test: p,0.01),

and 8–12 Hz and 35–45 Hz in the interval 210–240 ms (real ,

surrogate, 4 successive windows, permutation test: p,0.05).

We also compared the strength of phase-amplitude couplings

for the IC and NC conditions. All significant differences were

found when the 4–8 Hz component was involved. In fact, when

the 4–8 Hz component was considered as the low frequency

component, the coupling strength was smaller for IC than for NC.

We obtained the inverse when the 4–8 Hz component was

considered as the high frequency component (this was only the

case for the combination 1–4 Hz and 4–8 Hz). An example of this

phenomenon is illustrated in Figure 11. It can be seen that the

stimulus caused a change in phase-amplitude coupling strength

(either an increase or a decrease) and that this change was always

more pronounced for the IC than for the NC condition. All the

results about the differences between the two conditions for the

phase-amplitude couplings involving the 4–8 Hz component are

illustrated in Figure 12.

Phase-phase couplings
The pattern of results was more complex for the phase-phase

couplings. Different results were obtained for different coupling

coefficients. However, similarly to the phase-amplitude couplings,

most of the significant differences were observed when the 4–8 Hz

component was considered either as the low- or high-frequency

component. When comparing real and surrogate datasets, the

dataset yielding higher coupling strength varied depending on the

ratio of coupling coefficients. The phase-phase coupling between

the 1–4 Hz and 4–8 Hz components were lower for the real

dataset than for the surrogate one when a low coefficient ratio was

used (4:3 and 3:2). On the contrary, when this ratio increased

(from 4:1), the coupling strength was higher for the real signals.

For coefficients 2:1, the coupling strength was higher for the real

data while it was lower for coefficients 3:1. When the 4–8 Hz

component was considered as the low frequency component, the

coupling strength was higher for low ratios of coefficients. But, as

before, the opposite result was observed for higher ratios. An

example of this inversion phenomenon is shown in Figure 13 for

the 4–8 Hz and 35–45 Hz components with coefficient pairs set to

6:1 and 9:1. One can observe that these significant differences

were caused by sharp changes (either increase or decrease) in the

PLV. All the results of the comparisons between real and surrogate

datasets for phase-phase couplings for the 4–8 Hz component are

summarized in Figure 9. The permutation tests also identified

significant differences between the two datasets for several other

combinations of bands. The combinations of bands for which the

coupling strength was significantly higher for the real data were

the 1–4 Hz and 8–12 Hz bands with coefficients 3:1, 7:1, 8:1 and

9:1, the 1–4 Hz and 15–25 Hz bands with coefficients 6:1, the 1–

4 Hz and 35–45 Hz bands with coefficients 9:1, the 8–12 Hz and

15–25 Hz bands with coefficients 2:1 and 3:1, the 8–12 Hz and

Figure 7. Comparisons between datasets for the mean
estimated frequency. Mean estimated frequency for the 1–4 Hz
component for real (R) and surrogate (S) datasets (top left), ANOVA p-
values for the 1–4 Hz component (bottom left), mean estimated
frequency for the 4–8 Hz component for real and surrogate datasets
(top right), ANOVA p-values for the 4–8 Hz component (bottom right).
Vertical dashed lines denote stimulus onset and horizontal ones denote
the 5% significance level.
doi:10.1371/journal.pone.0060513.g007

Figure 8. Comparisons between conditions for the mean
estimated frequency. Mean estimated frequency for the 4–8 Hz
component for IC and NC conditions (top left), ANOVA p-values for the
4–8 Hz component (bottom left), mean estimated frequency for the 45–
55 Hz component for IC and NC conditions (top right), ANOVA p-values
for the 45–55 Hz component (bottom right). Vertical dashed lines
denote stimulus onset and horizontal ones denote the 5% significance
level.
doi:10.1371/journal.pone.0060513.g008
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35–45 Hz bands with coefficients 4:1, the 8–12 Hz and 45–55 Hz

bands with coefficients 6:1, the 8–12 Hz and 55–65 Hz bands

with coefficients 8:1, the 8–12 Hz and 65–75 Hz bands with

coefficients 9:1, the 15–25 Hz and 35–45 Hz bands with

coefficients 2:1. On the other hand, the combinations of bands

showing significantly higher coupling strength for the surrogate

datasets were the 1–4 Hz and 8–12 Hz band with coefficients 4:1

and 5:1, the 8–12 Hz and 35–45 Hz bands with coefficients 3:1,

the 8–12 Hz and 45–55 Hz bands with coefficients 4:1 and 5:1,

the 8–12 Hz and 55–65 Hz bands with coefficients 6:1, the 8–

12 Hz and 65–75 Hz bands with coefficients 6:1 and 7:1.

Consequently, the inversion phenomenon was also observed for

other combinations of bands, in particular the ones involving the

8–12 Hz band.

A very similar inversion phenomenon depending on coupling

coefficients occurred when we compared the IC and NC

conditions for the phase-phase couplings. When measuring

phase-phase couplings between the 1–4 Hz and 4–8 Hz compo-

nents, higher coupling strength was observed for NC with low

ratios of coefficients (4:3 and 3:2). While, for the coefficient 3:1, IC

yielded higher coupling strength. For larger ratios, no clear

differences were found for these two bands. When the 4–8 Hz

component was considered as the low frequency component, the

IC condition led to higher coupling strength compared to the NC

condition for low ratios of coefficient pairs. However, as the ratio

increased, the condition yielding the higher coupling strength

changed to NC. Figure 14 shows an example of this change for the

4–8 Hz and 8–12 Hz components with coefficients set to 3:2 and

2:1. We observed this phenomenon for various combinations of

frequency bands and coefficient pairs. All the results obtained with

the 4–8 Hz component are reported in Figure 12.

Advantages of Adaptive Frequency Tracking
For assessing the usefulness of the SFT for real EEG data, we

compared the two conditions IC and NC when the features were

computed without adaptive frequency tracking. In other words,

the features were also computed using the output signals of the

predefined band-pass filters as shown in Figure 1. Obviously, the

mean frequency could not be estimated without frequency

tracking as it is specifically an output of the SFT. Nevertheless,

the phase-amplitude and phase-phase couplings were measured

and the IC and NC conditions were compared with the same test

procedure as before. We focused on cross-frequency couplings

involving the 4–8 Hz component as they yielded all the significant

Figure 9. Comparisons between datasets for cross-frequency couplings. The phase-amplitude (top rows) and phase-phase (bottom rows)
couplings were measured with adaptive frequency tracking. Significant intervals are shown in blue (respectively in red) when the coupling strength
was higher for the real (R) (respectively surrogate (S)) dataset. Color intensity denotes significance level of the corresponding permutation test.
doi:10.1371/journal.pone.0060513.g009
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differences when the SFT was applied. Similarly to Figure 12, the

results obtained in this case are documented in Figure 15.

Comparing the two figures, one can notice that the results

obtained with and without adaptive frequency tracking are very

similar and that there is no conflict. However, a more detailed

investigation revealed that the differences between IC and NC in

terms of coupling strength were, in most cases, more clearly

highlighted when using the SFT. In fact, when investigating the

differences in cross-frequency couplings involving the 4–8 Hz

component, a greater number of successive significant windows

was obtained for only seven cases without tracking, including two

cases where no significant difference was observed after applying

the SFT. For all other cases, the proposed adaptive scheme

performed as well as or (more frequently) better than the

traditional approach, in terms of number of successive significant

windows. It also led to the detection of significant differences

between IC and NC which remained unnoticed without tracking

in five cases. The usefulness of the SFT is particularly apparent for

phase-amplitude couplings. However, it is worth mentioning that

the adaptation process in this algorithm introduces a delay. This

caused the intervals of significant differences to be shifted in time

compared the ones obtained without tracking. A coarse method

for comparing the results obtained with and without the SFT is to

count the number of successive significant windows in Figures 12

and 15 for phase-amplitude and phase-phase couplings. Thus, for

the phase-amplitude couplings, we obtained 102 and 29 windows

with and without frequency tracking. These values were 272 and

208 for phase-phase couplings. As mentioned previously, when

Figures 12 and 15 are put side-by-side, the significant intervals

obtained with the SFT were delayed compared to those obtained

without tracking as the adaptation process of the proposed

algorithm is not instantaneous. This delay could be quite large

depending on the dynamics of the signals under study. Neverthe-

less, in most cases, it remained reasonable and the intervals

overlapped. However, there were a few cases where the delay was

quite important (.200 ms). For instance, the significant interval

obtained when comparing the phase-phase couplings with 4:3

coefficients between the 1–4 Hz and 4–8 Hz components

occurred 300 ms later with frequency tracking. These long delays,

while unusual, could be explained by large non-stationary

dynamics in the input signals of the SFT. Indeed, the tracking

algorithm needs some time to adapt after sharp changes in

frequency, and, during the adaptation, the time-varying band-pass

filter is not centered on the underlying oscillatory component.

Discussion

Advances in analysis methods have revealed the importance of

neuronal oscillations in brain activity and (dys)function. Recent

studies have highlighted that the top-down control of perception

and brain responses is supported to a large extent by oscillatory

activity [45]. Consequently, these oscillatory components are now

considered as possibly highly efficient information-rich signals in

the field of neuroscience. Furthermore, the coupling mechanisms

occurring across frequency bands have been the focus of several

recent studies [10,46–48]. Collectively, these findings prompted us

to develop an adaptive frequency tracking scheme, the SFT, for

analyzing EEG data in more detail. Specifically, this algorithm was

designed to maximize the oscillatory behavior at the output which

is very important for extracting proper phase information, which,

in turn, can be used to measure cross-frequency couplings.

The advantages of the SFT for measuring cross-frequency

couplings were evaluated with synthetic signals and real EEG data

recorded during an IC experiment. First, the synthetic signals in

conjunction with Monte Carlo simulations highlighted two

desirable features of the proposed algorithm. In the first case, it

was shown to be resilient to broad-band noise as the PLV decrease

remained limited in high noise levels (Figure 5). In the second case,

synthetic signals imitating real EEG recordings were generated in

order to check that the SFT could cope well with interfering

oscillatory components (Figure 6). Therefore, these numerical

simulations illustrated two advantages of the adaptive scheme

Figure 10. Comparisons between datasets for the phase-
amplitude (PA) couplings. Coupling strength for real (R) and
surrogate (S) datasets was measured using the PLV. Mean PLV for the
1–4 Hz and 4–8 Hz components for real and surrogate datasets (top
left), ANOVA p-values for these components (bottom left), mean PLV for
the 4–8 Hz and 35–45 Hz components for real and surrogate datasets
(top right), ANOVA p-values for these components (bottom right).
Vertical dashed lines denote stimulus onset and horizontal ones denote
the 5% significance level.
doi:10.1371/journal.pone.0060513.g010

Figure 11. Comparisons between conditions for the phase-
amplitude (PA) couplings. Coupling strength for IC and NC
conditions was measured using the PLV. Mean PLV for the 1–4 Hz
and 4–8 Hz components for IC and NC conditions (top left), ANOVA p-
values for these components (bottom left), mean PLV for the 4–8 Hz
and 35–45 Hz components for IC and NC conditions (top right), ANOVA
p-values for these components (bottom right). Vertical dashed lines
denote stimulus onset and horizontal ones denote the 5% significance
level.
doi:10.1371/journal.pone.0060513.g011
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Figure 12. Comparisons between conditions for cross-frequency couplings. The phase-amplitude (top rows) and phase-phase (bottom
rows) couplings were measured with adaptive frequency tracking. Significant intervals are shown in blue (respectively in red) when the coupling
strength was higher for the IC (respectively NC) condition. Color intensity denotes significance level of the corresponding permutation test.
doi:10.1371/journal.pone.0060513.g012

Figure 13. Comparisons between datasets for the phase-phase
(PP) couplings. Coupling strength between the 4–8 Hz and 35–45 Hz
components for real (R) and surrogate (S) datasets was measured using
the PLV. Mean PLV with coupling coefficients set to 6:1 for real and
surrogate datasets (top left), ANOVA p-values for these coefficients
(bottom left), mean PLV with coupling coefficients set to 9:1 for real and
surrogate datasets (top right), ANOVA p-values for these coefficients
(bottom right). Vertical dashed lines denote stimulus onset and
horizontal ones denote the 5% significance level.
doi:10.1371/journal.pone.0060513.g013

Figure 14. Comparisons between conditions for the phase-
phase (PP) couplings. Coupling strength between the 4–8 Hz and 8–
12 Hz components was measured using the PLV. Mean PLV with
coupling coefficients set to 3:2 for IC and NC conditions (top left),
ANOVA p-values for these coefficients (bottom left), mean PLV with
coupling coefficients set to 2:1 for IC and NC conditions (top right),
ANOVA p-values for these coefficients (bottom right). Vertical dashed
lines denote stimulus onset and horizontal ones denote the 5%
significance level.
doi:10.1371/journal.pone.0060513.g014
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(resilience to broad-band noise and oscillatory interference)

compared to classical filter-bank approaches. These advantages

were confirmed when the SFT was applied to real EEG signals for

extracting the temporal evolution of differences between the IC

and NC conditions in terms of phase-amplitude and phase-phase

couplings. The number of successive significant windows was

larger with tracking than without for almost all combinations of

bands. The advantages of the proposed algorithm were particu-

larly apparent for phase-amplitude couplings. Furthermore,

although two significant differences of phase-phase couplings were

only detected without the SFT, it led to the detection of five such

differences that remained unnoticed with traditional band-pass

filtering. And the lengths of the significant intervals were longer

with adaptive frequency tracking in most cases. Thus, adaptive

frequency tracking could improve the measurements of cross-

frequency couplings through precise extraction of neuronal

oscillations. Moreover, as the SFT also provides an estimate of

the instantaneous frequency of the extracted component, signif-

icant changes in frequency could be observed for a few of the

bands under study, both when comparing the real and surrogate

datasets and the two conditions.

When considering more closely the outcomes of the compar-

isons between datasets and conditions (Figures 9 and 12), a

complex pattern of results was highlighted by the proposed

adaptive algorithm. Nonetheless, a few important observations can

be pointed out. First, the dataset or condition yielding the highest

coupling strength depended on the combination of bands. And, for

phase-phase couplings, it also depended on the coupling coeffi-

cients, or more specifically on the coefficient ratio. Second, when

comparing real and surrogate datasets, the significant differences

were in most cases due to changes in coupling strength, either

decreases or increases, for the real signals while it remained more

or less constant for the surrogate ones. Since the surrogate data

were generated so as to be stationary, it was expected. A similar

phenomenon was observed when comparing IC and NC

conditions. However, usually both conditions elicited a change

in coupling strength in the same direction. Nevertheless, this

change was typically more pronounced for IC. This seems to

indicate that the processing of such contours requires more

changes in terms of cross-frequency couplings, but clearly more

investigations are needed to confirm this observation. Regarding

the outcomes of the comparisons between the two conditions, it is

important to mention that the increase of the instantaneous

frequency of the 4–8 Hz component observed during IC

processing (Figure 8) was too weak to account for the inversion

of the differences in phase-phase couplings depending on the

coefficient ratio. To summarize, our data provide evidence for

condition-wise differences in phase-amplitude and phase-phase

couplings. A phase-resetting mechanism [49] might be the cause

for these differences. However, the directionality of these

differences depended on the considered frequency bands as well

as on the selected coupling coefficients, whereas the ERP is

Figure 15. Comparisons between conditions for cross-frequency couplings. The phase-amplitude (top rows) and phase-phase (bottom
rows) couplings were measured without adaptive frequency tracking. Significant intervals are shown in blue (respectively in red) when the coupling
strength was higher for the IC (respectively NC) condition. Color intensity denotes significance level of the corresponding permutation test.
doi:10.1371/journal.pone.0060513.g015
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generally of higher amplitude for IC than for NC [22–24,26].

Thus, with this dataset, there is no straightforward link between

changes in phase locking to a purely phase-resetting model.

Consequently, we consider mixed model [50] to be more likely.

Clearly, more investigations are required to perfectly understand

the role of cross-frequency couplings. Nonetheless, the coupling

phenomena reported in this article may link the responses to visual

stimuli observed in the lower frequencies [22–25,51,52] to the

ones observed in the higher frequencies [53], alongside the results

of numerous studies about cross-frequency couplings

[10,27,54,55]. For instance, a recent study [56] investigated with

a sustained-attention task the link between cross-frequency

couplings and perceptual outcome. In particular, one of the main

findings of this study reveals that the relationship between the

phase of higher-frequency oscillation and visual-target detection

can be almost completely dependent on the phase of delta and

theta components.

Some limitations concerning this study and the proposed

algorithm are worth discussing. First, the adaptation process in

the SFT is not instantaneous, and consequently the estimated

frequency suffers some delay. Thus the time-varying band-pass

filter used for extraction needs some time to center on the tracked

periodic component. This delay not only depends on the SFT

parameters, but also on the dynamics of the signal of interest.

Indeed, the adaptation is slower in highly non-stationary

environments. The delay introduced by the algorithm is clearly

visible when comparing the significant intervals for cross-

frequency couplings measured with and without adaptive

frequency tracking (Figures 12 and 15). A solution to this problem

would be to compensate for the delay introduced by the SFT.

However, there is no simple technique for this purpose as the delay

not only depend on the SFT parameters but also on the input

signal dynamics. Therefore, until a reliable approach for delay

compensation is developed, cross-frequency couplings could be

measured with and without adaptive frequency tracking. The

couplings obtained without tracking could help to determine the

onset of significant differences, while the ones obtained with the

SFT could help to determine the extent of such differences as well

as to identify undetected differences. This study also focused on

only a small cluster of surface electrodes chosen on the basis of the

results of a previous investigation [22], and therefore only local

information regarding the cross-frequency couplings were ob-

tained. Ideally, the same analysis procedure should be repeated for

all available electrodes in future studies. Doing this will help to

explicitly rule out any biases caused by our a priori selection of

electrodes. Furthermore, adaptive frequency tracking could also be

applied to intracranial EEG signals (which might be difficult to

obtain) or to signals computed through inverse solution (e.g. [57]).

In particular, the second type of signals can also be used to

measure couplings not only across frequency bands but also across

different brain areas (e.g. [58–60]). However, as the number of

signals to analyze increases the processing time may become

prohibitive. The computation load comes mainly from the

statistical analysis based on permutation tests as the other

operations such as filtering and tracking are fairly time-efficient.

The coupling analysis performed in this study also raises another

important question concerning the direction of the cross-frequency

interactions: are the low-frequency oscillations controlling the

high-frequency ones or is it the inverse [61]? This issue can be

investigated with causality measures, however they still have some

drawbacks that may render them inefficient in this case.
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