211 research outputs found

    A Randomized Comparison of Alternative Formats for Clinical Simulations

    Get PDF
    Computer-based clinical simulations for medical education vary widely in structure and for mat, yet few studies have examined which formats are optimal for particular educational settings. This study is a randomized comparison of the same simulated case in three formats: a "pedagogic" format offering explicit educational support, a "high-fidelity" format attempting to model clinical reasoning in the real world, and a "problem-solving" format that requires students to express specific diagnostic hypotheses Data were collected from rising third- year medical students using a posttest, attitudinal questionnaire, students' writeups of the case, and log files of students' progress through the simulation. Student performances on all measures differed significantly by format. In general, students using the pedagogic format were more proficient but less efficient. They acquired more information but were able to do proportionately less with it. The results suggest that the format of computer-based simulations is an important educational variable. Key words. medical education, undergraduate; clinical reasoning; computer-assisted instruction. (Med Decis Making 1991;11:265-272

    Diabetes eye screening in urban settings serving minority populations: detection of diabetic retinopathy and other ocular findings using telemedicine.

    Get PDF
    IMPORTANCE: The use of a nonmydriatic camera for retinal imaging combined with the remote evaluation of images at a telemedicine reading center has been advanced as a strategy for diabetic retinopathy (DR) screening, particularly among patients with diabetes mellitus from ethnic/racial minority populations with low utilization of eye care. OBJECTIVE: To examine the rate and types of DR identified through a telemedicine screening program using a nonmydriatic camera, as well as the rate of other ocular findings. DESIGN, SETTING, AND PARTICIPANTS: A cross-sectional study (Innovative Network for Sight [INSIGHT]) was conducted at 4 urban clinic or pharmacy settings in the United States serving predominantly ethnic/racial minority and uninsured persons with diabetes. Participants included persons aged 18 years or older who had type 1 or 2 diabetes mellitus and presented to the community-based settings. MAIN OUTCOMES AND MEASURES: The percentage of DR detection, including type of DR, and the percentage of detection of other ocular findings. RESULTS: A total of 1894 persons participated in the INSIGHT screening program across sites, with 21.7% having DR in at least 1 eye. The most common type of DR was background DR, which was present in 94.1% of all participants with DR. Almost half (44.2%) of the sample screened had ocular findings other than DR; 30.7% of the other ocular findings were cataract. CONCLUSIONS AND RELEVANCE: In a DR telemedicine screening program in urban clinic or pharmacy settings in the United States serving predominantly ethnic/racial minority populations, DR was identified on screening in approximately 1 in 5 persons with diabetes. The vast majority of DR was background, indicating high public health potential for intervention in the earliest phases of DR when treatment can prevent vision loss. Other ocular conditions were detected at a high rate, a collateral benefit of DR screening programs that may be underappreciated

    The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing

    Get PDF
    Inhibiting insulin/IGF-1 signalling extends lifespan and delays age-related disease in species throughout the animal kingdom. This life-extension pathway, the first to be defined, was discovered through genetic studies in the small roundworm Caenorhabditis elegans. This discovery is described here

    Genomic alterations indicate tumor origin and varied metastatic potential of disseminated cells from prostate-cancer patients

    Get PDF
    Disseminated epithelial cells can be isolated from the bone marrow of a far greater fraction of prostate-cancer patients than the fraction of patients who progress to metastatic disease. To provide a better understanding of these cells, we have characterized their genomic alterations. We first present an array comparative genomic hybridization method capable of detecting genomic changes in the small number of disseminated cells (10-20) that can typically be obtained from bone-marrow aspirates of prostate-cancer patients. We show multiple regions of copy-number change, including alterations common in prostate cancer, such as 8p loss, 8q gain, and gain encompassing the androgen-receptor gene on Xq, in the disseminated cell pools from 11 metastatic patients. We found fewer and less striking genomic alterations in the 48 pools of disseminated cells from patients with organ-confined disease. However, we identify changes shared by these samples with their corresponding primary tumors and prostate-cancer alterations reported in the literature, evidence that these cells, like those in advanced disease, are disseminated tumor cells (DTCs). We also demonstrate that DTCs from patients with advanced and localized disease share several abnormalities, including losses containing cell-adhesion genes and alterations reported to associate with progressive disease. These shared alterations might confer the capability to disseminate or establish secondary disease. Overall, the spectrum of genomic deviations is evidence for metastatic capacity in advanced-disease DTCs and variation in that capacity in DTCs from localized disease. Our analysis lays the foundation for elucidation of the relationship between DTC genomic alterations and progressive prostate cancer

    Infrastructural Speculations: Tactics for Designing and Interrogating Lifeworlds

    Get PDF
    This paper introduces “infrastructural speculations,” an orientation toward speculative design that considers the complex and long-lived relationships of technologies with broader systems, beyond moments of immediate invention and design. As modes of speculation are increasingly used to interrogate questions of broad societal concern, it is pertinent to develop an orientation that foregrounds the “lifeworld” of artifacts—the social, perceptual, and political environment in which they exist. While speculative designs often imply a lifeworld, infrastructural speculations place lifeworlds at the center of design concern, calling attention to the cultural, regulatory, environmental, and repair conditions that enable and surround particular future visions. By articulating connections and affinities between speculative design and infrastructure studies research, we contribute a set of design tactics for producing infrastructural speculations. These tactics help design researchers interrogate the complex and ongoing entanglements among technologies, institutions, practices, and systems of power when gauging the stakes of alternate lifeworlds

    Pharmacogenetic Discovery in CALGB (Alliance) 90401 and Mechanistic Validation of a VAC14 Polymorphism That Increases Risk of Docetaxel-Induced Neuropathy

    Get PDF
    Purpose Discovery of single nucleotide polymorphisms (SNPs) that predict a patient\u27s risk of docetaxel-induced neuropathy would enable treatment individualization to maximize efficacy and avoid unnecessary toxicity. The objectives of this analysis were to discover SNPs associated with docetaxel-induced neuropathy and mechanistically validate these associations in preclinical models of drug-induced neuropathy. Experimental Design A genome-wide association study was conducted in metastatic castrate-resistant prostate cancer patients treated with docetaxel, prednisone and randomized to bevacizumab or placebo on CALGB 90401. SNPs were genotyped on the Illumina HumanHap610-Quad platform followed by rigorous quality control. The inference was conducted on the cumulative dose at occurrence of grade 3+ sensory neuropathy using a cause-specific hazard model that accounted for early treatment discontinuation. Genes with SNPs significantly associated with neuropathy were knocked down in cellular and mouse models of drug-induced neuropathy. Results 498,081 SNPs were analyzed in 623 Caucasian patients, 50 (8%) of whom experienced grade 3+ neuropathy. The 1000 SNPs most associated with neuropathy clustered in relevant pathways including neuropathic pain and axonal guidance. A SNP in VAC14 (rs875858) surpassed genome-wide significance (p=2.12×10-8 adjusted p=5.88×10-7). siRNA knockdown of VAC14 in stem cell derived peripheral neuronal cells increased docetaxel sensitivity as measured by decreased neurite processes (p=0.0015) and branches (p\u3c0.0001). Prior to docetaxel treatment VAC14 heterozygous mice had greater nociceptive sensitivity than wild-type litter mate controls (p=0.001). Conclusions VAC14 should be prioritized for further validation of its potential role as a predictor of docetaxel-induced neuropathy and biomarker for treatment individualization

    Enabling long-term oceanographic research : changing data practices, information management strategies and informatics

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 2132-2142, doi:10.1016/j.dsr2.2008.05.009.Interdisciplinary global ocean science requires new ways of thinking about data and data management. With new data policies and growing technological capabilities, datasets of increasing variety and complexity are being made available digitally and data management is coming to be recognized as an integral part of scientific research. To meet the changing expectations of scientists collecting data and of data reuse by others, collaborative strategies involving diverse teams of information professionals are developing. These changes are stimulating the growth of information infrastructures that support multi-scale sampling, data repositories, and data integration. Two examples of oceanographic projects incorporating data management in partnership with science programs are discussed: the Palmer Station Long-Term Ecological Research program (Palmer LTER) and the United States Joint Global Ocean Flux Study (US JGOFS). Lessons learned from a decade of data management within these communities provide an experience base from which to develop information management strategies – short-term and long-term. Ocean Informatics provides one example of a conceptual framework for managing the complexities inherent to sharing oceanographic data. Elements are introduced that address the economies-of-scale and the complexities-of-scale pertinent to a broader vision of information management and scientific research.Support is provided by NSF OPP-0217282, OCE-0405069, HSD-0433369 and Scripps Institution of Oceanography (K.S.Baker) and by NSF OCE-8814310, OCE-0097291, OCE- 0510046 and OCE-0646353 (C.Chandler)

    The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific

    Get PDF
    The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp). Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed “fragment recruitment,” addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed “extreme assembly,” made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1) extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2) numerous changes in gene content some with direct adaptive implications; and (3) hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic similarity between metagenomic samples and show how they may be grouped into several community types. Specific functional adaptations can be identified both within individual ribotypes and across the entire community, including proteorhodopsin spectral tuning and the presence or absence of the phosphate-binding gene PstS
    corecore