271 research outputs found
Enterprise Social Benefit and the Economic Transition in Hungary
In Hungary as in other East Bloc countries, enterprises have given a variety of nonwage benefits to their workers, sometimes called the "social wage." We explore what has happened to non-wage compensation during the economic transition which began in 1989. During this period, the real wage has fallen, and many aspects of enterprise operations have undergone change. This paper considers three broad questions. (1) How has total compensation and its composition changed during this period of restructuring? Have changes in non-wage compensation offset or reinforced changes in wages and which elements have been increasing, which decreasing? (2) What factors can account for the change? (3) Have enterprise non-wage benefits in fact served social functions in addition to their business functions, and, if so, has the social role of benefits changed during this period
A multi-center diabetes eye screening study in community settings: Study design and methodology
Purpose: Diabetes is the leading cause of new cases of blindness among adults aged 20-74 years within the United States. The Innovative Network for Sight Research group (INSIGHT) designed the Diabetic Eye Screening Study (DESS) to examine the feasibility and short-term effectiveness of non-mydriatic diabetic retinopathy (DR) screening for adults with diabetes in community-based settings.Methods: Study enrollment began in December 2011 at four sites: an internal medicine clinic at a county hospital in Birmingham, Alabama; a Federally-qualified community healthcare center in Miami-Dade County, Florida; a university-affiliated outpatient pharmacy in Philadelphia, Pennsylvania; and a medical home in Winston-Salem, North Carolina. People 18 years or older with previously diagnosed diabetes were offered free DR screening using non-mydriatic retinal photography that was preceded by a brief questionnaire addressing demographic information and previous eye care use. Visual acuity was also measured for each eye. Images were evaluated at a telemedicine reading center by trained evaluators using the National Health System DR grading classification. Participants and their physicians were sent screening report results and telephoned for a follow-up survey 3 months post-screening to determine whether participants had sought follow-up comprehensive eye care and their experiences with the screening process.Results: Target enrollment at each site was a minimum of 500 persons. Three of the four sites met this enrollment goal.Conclusion: The INSIGHT/DESS is intended to establish the feasibility and short-term effectiveness of DR screening using non-mydriatic retinal photography in persons with diabetes who seek services in community-based clinic and pharmacy settings
Evaluation of a Web-Based Training in Smoking Cessation Counseling Targeting U.S. Eye-Care Professionals
Background. Smoking causes blindness-related diseases. Eye-care providers are uniquely positioned to help their patients quit smoking. Aims. Using a pre-/postevaluation design, this study evaluated a web-based training in smoking cessation counseling targeting eye-care providers. Method. The training was developed based on the 3A1R protocol: âAsk about smoking, Advise to quit, Assess willingness to quit, and Refer to tobacco quitlines,â and made available in the form of a web-based video presentation. Providers (n = 654) at four academic centers were invited to participate. Participants completed pretraining, posttraining, and 3-month follow-up surveys. Main outcomes were self-reported improvement in their motivation, confidence, and counseling practices at 3-month follow-up. Generalized linear mixed models for two time-points (pretraining and 3-month) were conducted for these outcomes. Results. A total of 113 providers (54.0% males) participated in the study (17.7% response rate). At the 3-month evaluation, 9.8% of participants reported improvement in their motivation. With respect to the 3A1R, 8% reported improvement in their confidence for Ask, 15.5% for Advise, 28.6% for Assess, and 37.8% for Refer. Similarly, 25.5% reported improvement in their practices for Ask, 25.5% for Advise, 37.2% for Assess, and 39.4% for Refer to tobacco quitlines (p <.001 for all except for Refer confidence p =.05). Discussion. Although participation rate was low, the program effectively improved providersâ smoking cessation counseling practices. Conclusions. Including training in smoking cessation counseling in ophthalmology curriculums, and integrating the 3A1R protocol into the electronic medical records systems in eye-care settings, might promote smoking cessation practices in these settings
Diabetes eye screening in urban settings serving minority populations: Detection of diabetic retinopathy and other ocular findings using telemedicine
IMPORTANCE The use of a nonmydriatic camera for retinal imaging combined with the remote evaluation of images at a telemedicine reading center has been advanced as a strategy for diabetic retinopathy (DR) screening, particularly among patients with diabetes mellitus from ethnic/racial minority populations with low utilization of eye care. OBJECTIVE To examine the rate and types of DR identified through a telemedicine screening program using a nonmydriatic camera, as well as the rate of other ocular findings. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional study (Innovative Network for Sight [INSIGHT]) was conducted at 4 urban clinic or pharmacy settings in the United States serving predominantly ethnic/racial minority and uninsured persons with diabetes. Participants included persons aged 18 years or older who had type 1 or 2 diabetes mellitus and presented to the community-based settings. MAIN OUTCOMES AND MEASURES The percentage of DR detection, including type of DR, and the percentage of detection of other ocular findings. RESULTS A total of 1894 persons participated in the INSIGHT screening program across sites, with 21.7%having DR in at least 1 eye. The most common type of DR was background DR, which was present in 94.1%of all participants with DR. Almost half (44.2%) of the sample screened had ocular findings other than DR; 30.7%of the other ocular findings were cataract. CONCLUSIONS AND RELEVANCE In a DR telemedicine screening program in urban clinic or pharmacy settings in the United States serving predominantly ethnic/racial minority populations, DR was identified on screening in approximately 1 in 5 persons with diabetes. The vast majority of DR was background, indicating high public health potential for intervention in the earliest phases of DR when treatment can prevent vision loss. Other ocular conditions were detected at a high rate, a collateral benefit of DR screening programs that may be underappreciated
Young and Intermediate-age Distance Indicators
Distance measurements beyond geometrical and semi-geometrical methods, rely
mainly on standard candles. As the name suggests, these objects have known
luminosities by virtue of their intrinsic proprieties and play a major role in
our understanding of modern cosmology. The main caveats associated with
standard candles are their absolute calibration, contamination of the sample
from other sources and systematic uncertainties. The absolute calibration
mainly depends on their chemical composition and age. To understand the impact
of these effects on the distance scale, it is essential to develop methods
based on different sample of standard candles. Here we review the fundamental
properties of young and intermediate-age distance indicators such as Cepheids,
Mira variables and Red Clump stars and the recent developments in their
application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in
Space Science Reviews (Chapter 3 of a special collection resulting from the
May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space
Age
Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050
Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US per capita, purchasing-power parity-adjusted US8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 13.7 billion was targeted toward the COVID-19 health response. 1.4 billion was repurposed from existing health projects. 2.4 billion (17.9%) was for supply chain and logistics. Only 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe
Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 Ă 10-20), ER-negative BC (P=1.1 Ă 10-13), BRCA1-associated BC (P=7.7 Ă 10-16) and triple negative BC (P-diff=2 Ă 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 Ă 10-3) and ABHD8 (P<2 Ă 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3âČ-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
The exon 13 duplication in the BRCA1 gene is a founder mutation present in geographicaly diverse populations
Recently, a 6-kb duplication of exon 13, which creates a frameshift in the coding sequence of the BRCA1 gene, has been described in three unrelated U.S. families of European ancestry and in one Portuguese family. Here, our goal was to estimate the frequency and geographic diversity of carriers of this duplication. To do this, a collaborative screening study was set up that involved 39 institutions from 19 countries and included 3,580 unrelated individuals with a family history of the disease and 934 early-onset breast and/or ovarian cancer cases. A total of 11 additional families carrying this mutation were identified in Australia (1), Belgium (1), Canada (1), Great Britain (6), and the United States (2). Haplotyping showed that they are likely to derive from a common ancestor, possibly of northern British origin. Our results demonstrate that it is strongly advisable, for laboratories carrying out screening either in English-speaking countries or in countries with historical links with Britain, to include within their BRCA1 screening protocols the polymerase chain reaction-based assay described in this report
The predictive ability of the 313 variantâbased polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant
PURPOSE : To evaluate the association between a previously published 313 variantâbased breast cancer (BC) polygenic risk score
(PRS313) and contralateral breast cancer (CBC) risk, in BRCA1 and BRCA2 pathogenic variant heterozygotes.
METHODS : We included women of European ancestry with a prevalent first primary invasive BC (BRCA1 = 6,591 with 1,402
prevalent CBC cases; BRCA2 = 4,208 with 647 prevalent CBC cases) from the Consortium of Investigators of Modifiers of BRCA1/2
(CIMBA), a large international retrospective series. Cox regression analysis was performed to assess the association between overall
and ER-specific PRS313 and CBC risk.
RESULTS : For BRCA1 heterozygotes the estrogen receptor (ER)-negative PRS313 showed the largest association with CBC risk, hazard
ratio (HR) per SD = 1.12, 95% confidence interval (CI) (1.06â1.18), C-index = 0.53; for BRCA2 heterozygotes, this was the ER-positive
PRS313, HR= 1.15, 95% CI (1.07â1.25), C-index = 0.57. Adjusting for family history, age at diagnosis, treatment, or pathological
characteristics for the first BC did not change association effect sizes. For women developing first BC < age 40 years, the cumulative
PRS313 5th and 95th percentile 10-year CBC risks were 22% and 32% for BRCA1 and 13% and 23% for BRCA2 heterozygotes,
respectively.
CONCLUSION : The PRS313 can be used to refine individual CBC risks for BRCA1/2 heterozygotes of European ancestry, however the
PRS313 needs to be considered in the context of a multifactorial risk model to evaluate whether it might influence clinical decisionmaking.This work was supported by the Alpe dâHuZes/Dutch Cancer Society (KWF
Kankerbestrijding) project 6253 and Dutch Cancer Society (KWF Kankerbestrijding)
project UL2014-7473. CIMBA: The CIMBA data management and data analysis were
supported by Cancer ResearchâUK grants C12292/A20861, C12292/A11174. G.C.T.
and A.B.S. are NHMRC Research Fellows. iCOGS: the European Communityâs Seventh
Framework Programme under grant agreement number 223175 (HEALTH-F2-2009-
223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/
A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/
A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS
initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112âthe GAME-ON
initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes
of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer (CRN-
87521), and the Ministry of Economic Development, Innovation and Export Trade
(PSR-SIIRI-701), Komen Foundation for the Cure, the Breast Cancer Research
Foundation, and the Ovarian Cancer Research Fund. OncoArray: the PERSPECTIVE
and PERSPECTIVE I&I projects funded by the Government of Canada through
Genome Canada and the Canadian Institutes of Health Research, the MinistĂšre de
lâĂconomie, de la Science et de lâInnovation du QuĂ©bec through Genome QuĂ©bec,
and the Quebec Breast Cancer Foundation; the NCI Genetic Associations and
Mechanisms in Oncology (GAME-ON) initiative and Discovery, Biology and Risk of
Inherited Variants in Breast Cancer (DRIVE) project (NIH grants U19 CA148065 and
X01HG007492); and Cancer Research UK (C1287/A10118 and C1287/A16563). BCFR:
UM1 CA164920 from the National Cancer Institute. The content of this paper does
not necessarily reflect the views or policies of the National Cancer Institute or any of
the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does
mention of trade names, commercial products, or organizations imply endorsement
by the US Government or the BCFR. BFBOCC: Lithuania (BFBOCC-LT): Research
Council of Lithuania grant SEN-18/2015. BIDMC: Breast Cancer Research Foundation.
BMBSA: Cancer Association of South Africa (PI Elizabeth J. van Rensburg). BRI-COH: S.
L.N. is partially supported by the Morris and Horowitz Families Professorship. CNIO:
Spanish Ministry of Health PI16/00440 supported by FEDER funds, the Spanish
Ministry of Economy and Competitiveness (MINECO) SAF2014-57680-R and the Spanish Research Network on Rare diseases (CIBERER). COH-CCGCRN: Research
reported in this publication was supported by the National Cancer Institute of the
National Institutes of Health under grant number R25CA112486, and RC4CA153828
(PI: J. Weitzel) from the National Cancer Institute and the Office of the Director,
National Institutes of Health. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National Institutes of
Health. CONSIT TEAM: Associazione Italiana Ricerca sul Cancro (AIRC; IG2015 number
16732) to P. Peterlongo. DEMOKRITOS: European Union (European Social FundâESF)
and Greek national funds through the Operational Program âEducation and Lifelong
Learningâ of the National Strategic Reference Framework (NSRF)âResearch Funding
Program of the General Secretariat for Research & Technology: SYN11_10_19 NBCA.
Investing in knowledge society through the European Social Fund. DFKZ: German
Cancer Research Center. EMBRACE: Cancer Research UK Grants C1287/A10118 and
C1287/A11990. D.G.E. and F.L. are supported by an NIHR grant to the Biomedical
Research Centre, Manchester. The Investigators at The Institute of Cancer Research
and The Royal Marsden NHS Foundation Trust are supported by an NIHR grant to the
Biomedical Research Centre at The Institute of Cancer Research and The Royal
Marsden NHS Foundation Trust. R.E. and E.B. are supported by Cancer Research UK
Grant C5047/A8385. R.E. is also supported by NIHR support to the Biomedical
Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. FCCC: A.K.G. was in part funded by the NCI (R01 CA214545), The
University of Kansas Cancer Center Support Grant (P30 CA168524), The Kansas
Institute for Precision Medicine (P20 GM130423), and the Kansas Bioscience Authority
Eminent Scholar Program. A.K.G. is the Chancellors Distinguished Chair in Biomedical
Sciences Professorship. FPGMX: A. Vega is supported by the Spanish Health Research
Foundation, Instituto de Salud Carlos III (ISCIII), partially supported by FEDER funds
through Research Activity Intensification Program (contract grant numbers: INT15/
00070, INT16/00154, INT17/00133), and through Centro de Investigación Biomédica
en Red de Enferemdades Raras CIBERER (ACCI 2016: ER17P1AC7112/2018);
Autonomous Government of Galicia (Consolidation and structuring program:
IN607B), and by the Fundación Mutua Madrileña. The German Consortium for
Hereditary Breast and Ovarian Cancer (GC-HBOC) is funded by the German Cancer
Aid (110837, 70111850, coordinator: Rita K. Schmutzler, Cologne) and the Ministry for
Innovation, Science and Research of the State of North Rhine-Westphalia (#323-
8.0302.16.02-132142). GEMO: initially funded by the French National Institute of
Cancer (INCa, PHRC Ile de France, grant AOR 01 082, 2001-2003, grant 2013-1-BCB-01-
ICH-1), the Association âLe cancer du sein, parlons-en!â Award (2004), the Association
for International Cancer Research (2008-2010), and the Foundation ARC pour la
recherche sur le cancer (grant PJA 20151203365). It also received support from the
Canadian Institute of Health Research for the âCIHR Team in Familial Risks of Breast
Cancerâ program (2008â2013), and the European commission FP7, Project
«Collaborative Ovarian, breast and prostate Gene-environment Study (COGS),
Large-scale integrating project» (2009â2013). GEMO is currently supported by the
INCa grant SHS-E-SP 18-015. GEORGETOWN: The Survey, Recruitment, and Biospecimen
Collection Shared Resource at Georgetown University (NIH/NCI grant P30-
CA051008), the Fisher Center for Hereditary Cancer and Clinical Genomics Research,
and the Nina Hyde Center for Breast Cancer Research. G-FAST: Bruce Poppe is a
senior clinical investigator of FWO. Mattias Van Heetvelde obtained funding from
IWT. HCSC: Spanish Ministry of Health PI15/00059, PI16/01292, and CB-161200301
CIBERONC from ISCIII (Spain), partially supported by European Regional Development
FEDER funds. HEBCS: Helsinki University Hospital Research Fund, the Finnish Cancer
Society and the Sigrid Juselius Foundation. The HEBON study is supported by the
Dutch Cancer Society grants NKI1998-1854, NKI2004-3088, NKI2007-3756, the Netherlands Organisation of Scientific Research grant NWO 91109024, the Pink
Ribbon grants 110005 and 2014-187.WO76, the BBMRI grant NWO 184.021.007/CP46
and the Transcan grant JTC 2012 Cancer 12-054. HRBCP: Hong Kong Sanatorium and
Hospital, Dr Ellen Li Charitable Foundation, The Kerry Group Kuok Foundation,
National Institute of Health1R 03CA130065, and North California Cancer Center.
HUNBOCS: Hungarian Research Grants KTIA-OTKA CK-80745, NKFI_OTKA K-112228
and TUDFO/51757/2019-ITM. ICO: Contract grant sponsor: Supported by the Carlos III
National Health Institute funded by FEDER fundsâa way to build Europeâ(PI16/00563,
PI19/00553 and CIBERONC); the Government of Catalonia (Pla estratĂšgic de recerca i
innovaciĂł en salut (PERIS) Project MedPerCan, 2017SGR1282 and 2017SGR496); and
CERCA program.IHCC: supported by grant PBZ_KBN_122/P05/2004 and the program
of the Minister of Science and Higher Education under the name âRegional Initiative
of Excellenceâ in 2019â2022 project number 002/RID/2018/19 amount of financing 12
000 000 PLN. ILUH: Icelandic Association âWalking for Breast Cancer Researchâ and by
the Landspitali University Hospital Research Fund. INHERIT: Canadian Institutes of
Health Research for the âCIHR Team in Familial Risks of Breast Cancerâ programâgrant
CRN-87521 and the Ministry of Economic Development, Innovation and Export
Tradeâgrant # PSR-SIIRI-701. IOVHBOCS: Ministero della Salute and â5Ă1000â Istituto
Oncologico Veneto grant. IPOBCS: Liga Portuguesa Contra o Cancro. kConFab: The
National Breast Cancer Foundation, and previously by the National Health and
Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer
Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer
Foundation of Western Australia. KOHBRA: the Korea Health Technology R&D Project
through the Korea Health Industry Development Institute (KHIDI), and the National
R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea
(HI16C1127; 1020350; 1420190). KUMC: NIGMS P20 GM130423 (to A.K.G.). MAYO: NIH
grants CA116167, CA192393 and CA176785, an NCI Specialized Program of Research
Excellence (SPORE) in Breast Cancer (CA116201), and a grant from the Breast Cancer
Research Foundation. MCGILL: Jewish General Hospital Weekend to End Breast
Cancer, Quebec Ministry of Economic Development, Innovation and Export Trade.
Marc Tischkowitz is supported by the funded by the European Union Seventh
Framework Program (2007Y2013)/European Research Council (Grant No. 310018).
MODSQUAD: MH CZâDRO (MMCI, 00209805) and LM2018125, MEYSâNPS IâLO1413 to LF, and by Charles University in Prague project UNCE204024 (MZ). MSKCC: the
Breast Cancer Research Foundation, the Robert and Kate Niehaus Clinical Cancer
Genetics Initiative, the Andrew Sabin Research Fund and a Cancer Center Support
Grant/Core Grant (P30 CA008748). NAROD: 1R01 CA149429-01. NCI: the Intramural
Research Program of the US National Cancer Institute, NIH, and by support services
contracts NO2-CP-11019-50, N02-CP-21013-63 and N02-CP-65504 with Westat, Inc,
Rockville, MD. NICCC: Clalit Health Services in Israel, the Israel Cancer Association and
the Breast Cancer Research Foundation (BCRF), NY. NNPIO: the Russian Foundation
for Basic Research (grants 17-00-00171, 18-515-45012 and 19-515-25001). NRG Oncology: U10 CA180868, NRG SDMC grant U10 CA180822, NRG Administrative
Office and the NRG Tissue Bank (CA 27469), the NRG Statistical and Data Center (CA
37517) and the Intramural Research Program, NCI. OSUCCG: Ohio State University
Comprehensive Cancer Center. PBCS: supported by the âFondazione Pisa per la
Scienza, project nr. 127/2016. Maria A Caligo was supported by the grant: ân. 127/16
Caratterizzazione delle varianti missenso nei geni BRCA1/2 per la valutazione del
rischio di tumore al senoâ by Fondazione Pisa, Pisa, Italy; SEABASS: Ministry of
Science, Technology and Innovation, Ministry of Higher Education (UM.C/HlR/MOHE/
06) and Cancer Research Initiatives Foundation. SMC: the Israeli Cancer Association.
SWE-BRCA: the Swedish Cancer Society. UCHICAGO: NCI Specialized Program of
Research Excellence (SPORE) in Breast Cancer (CA125183), R01 CA142996,
1U01CA161032 and by the Ralph and Marion Falk Medical Research Trust, the
Entertainment Industry Fund National Womenâs Cancer Research Alliance and the
Breast Cancer research Foundation. O.I.O. is an ACS Clinical Research Professor. UCLA:
Jonsson Comprehensive Cancer Center Foundation; Breast Cancer Research
Foundation. UCSF: UCSF Cancer Risk Program and Helen Diller Family Comprehensive
Cancer Center. UKFOCR: Cancer Research h UK. UPENN: Breast Cancer Research
Foundation; Susan G. Komen Foundation for the cure, Basser Research Center for
BRCA. UPITT/MWH: Hackers for Hope Pittsburgh. VFCTG: Victorian Cancer Agency,
Cancer Australia, National Breast Cancer Foundation. WCP: B.Y.K. is funded by the
American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN) and
the National Center for Advancing Translational Sciences (NCATS), grant
UL1TR000124.https://www.gimjournal.org/am2023Genetic
Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)
Background:In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers.Methods:We have genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach.Results:We found no evidence of association with breast cancer risk for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93â1.04, P=0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89â1.06, P=0.5) mutation carriers.Conclusion:This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out
- âŠ