38 research outputs found

    Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans

    Get PDF
    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus ß-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75 mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40 mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans.Postprint (published version

    The Phosphate Transporter PiT1 (Slc20a1) Revealed As a New Essential Gene for Mouse Liver Development

    Get PDF
    BACKGROUND: PiT1 (or SLC20a1) encodes a widely expressed plasma membrane protein functioning as a high-affinity Na(+)-phosphate (Pi) cotransporter. As such, PiT1 is often considered as a ubiquitous supplier of Pi for cellular needs regardless of the lack of experimental data. Although the importance of PiT1 in mineralizing processes have been demonstrated in vitro in osteoblasts, chondrocytes and vascular smooth muscle cells, in vivo evidence is missing. METHODOLOGY/PRINCIPAL FINDINGS: To determine the in vivo function of PiT1, we generated an allelic series of PiT1 mutations in mice by combination of wild-type, hypomorphic and null PiT1 alleles expressing from 100% to 0% of PiT1. In this report we show that complete deletion of PiT1 results in embryonic lethality at E12.5. PiT1-deficient embryos display severely hypoplastic fetal livers and subsequent reduced hematopoiesis resulting in embryonic death from anemia. We show that the anemia is not due to placental, yolk sac or vascular defects and that hematopoietic progenitors have no cell-autonomous defects in proliferation and differentiation. In contrast, mutant fetal livers display decreased proliferation and massive apoptosis. Animals carrying two copies of hypomorphic PiT1 alleles (resulting in 15% PiT1 expression comparing to wild-type animals) survive at birth but are growth-retarded and anemic. The combination of both hypomorphic and null alleles in heterozygous compounds results in late embryonic lethality (E14.5-E16.5) with phenotypic features intermediate between null and hypomorphic mice. In the three mouse lines generated we could not evidence defects in early skeleton formation. CONCLUSION/SIGNIFICANCE: This work is the first to illustrate a specific in vivo role for PiT1 by uncovering it as being a critical gene for normal developmental liver growth

    Addressing Criticisms of Large-Scale Marine Protected Areas

    Get PDF
    Designated large-scale marine protected areas (LSMPAs, 100,000 or more square kilometers) constitute over two-thirds of the approximately 6.6% of the ocean and approximately 14.5% of the exclusive economic zones within marine protected areas. Although LSMPAs have received support among scientists and conservation bodies for wilderness protection, regional ecological connectivity, and improving resilience to climate change, there are also concerns. We identified 10 common criticisms of LSMPAs along three themes: (1) placement, governance, and management; (2) political expediency; and (3) social–ecological value and cost. Through critical evaluation of scientific evidence, we discuss the value, achievements, challenges, and potential of LSMPAs in these arenas. We conclude that although some criticisms are valid and need addressing, none pertain exclusively to LSMPAs, and many involve challenges ubiquitous in management. We argue that LSMPAs are an important component of a diversified management portfolio that tempers potential losses, hedges against uncertainty, and enhances the probability of achieving sustainably managed oceans

    Assessing the Psychedelic "After-Glow" in Ayahuasca Users : Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities

    Get PDF
    Ayahuasca is a plant tea containing the psychedelic 5-HT agonist N,N -dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Using 1 H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the "nonjudging" subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the anterior cingulate cortex and medial temporal lobe structures involved in emotion and memory potentially underlie the post-acute psychological effects of ayahuasca

    Assembly, molecular organization, and membrane-binding properties of development-specific septins

    Full text link
    Septin complexes display remarkable plasticity in subunit composition, yet how a new subunit assembled into higher-order structures confers different functions is not fully understood. Here, this question is addressed in budding yeast, where during meiosis Spr3 and Spr28 replace the mitotic septin subunits Cdc12 and Cdc11 (and Shs1), respectively. In vitro, the sole stable complex that contains both meiosis-specific septins is a linear Spr28–Spr3–Cdc3–Cdc10–Cdc10–Cdc3–Spr3–Spr28 hetero-octamer. Only coexpressed Spr3 and Spr28 colocalize with Cdc3 and Cdc10 in mitotic cells, indicating that incorporation requires a Spr28-Spr3 protomer. Unlike their mitotic counterparts, Spr28-Spr3–capped rods are unable to form higher-order structures in solution but assemble to form long paired filaments on lipid monolayers containing phosphatidylinositol-4,5-bisphosphate, mimicking presence of this phosphoinositide in the prospore membrane. Spr28 and Spr3 fail to rescue the lethality of a cdc11Δ cdc12Δ mutant, and Cdc11 and Cdc12 fail to restore sporulation proficiency to spr3Δ/spr3Δ spr28Δ/spr28Δ diploids. Thus, specific meiotic and mitotic subunits endow septin complexes with functionally distinct properties

    Le facteur de croissance des fibroblastes 23 et son récepteur Klotho

    No full text
    Le rein tient une place centrale dans la détermination de la phosphatémie. Il adapte la réabsorption de phosphate dans le tubule proximal aux besoins de l’organisme et il contrôle l’absorption digestive de phosphate et de calcium par l’intermédiaire du calcitriol qu’il synthétise. La découverte du FGF23 (fibroblast growth factor 23) et son identification comme une hormone qui contrôle le métabolisme du phosphate et du calcitriol a permis de préciser les mécanismes par lesquels les fonctions de réabsorption du phosphate et de synthèse hormonale dans le tubule proximal rénal sont couplées. L’identification du FGF23 a mis en évidence un axe os-rein qui contrôle la minéralisation osseuse. L’étude de modèles animaux a considérablement amélioré notre compréhension de l’homéostasie du phosphate et a fait émerger le rôle de la protéine klotho qui est indispensable à l’action du FGF23. Cette revue détaille les fonctions du FGF23 et de klotho en physiologie et au cours de différentes maladies d’origine génétique ou acquise. Le phosphate est impliqué dans les processus de calcification vasculaire et tissulaire, et de prolifération cellulaire. Les anomalies touchant l’axe FGF23-Klotho altèrent l’espérance de vie et sont impliquées dans les processus de vieillissement

    Millennials y Kahoot!: la gamificación como propuesta de innovación educativa: Millennials and Kahoot!: gamification as a proposal for educational innovation

    No full text
    Se realizó en la Universidad Argentina de la Empresa una investigación que tuvo como objetivo introducir la gamificación educativa a través de la implantación de Kahoot! como recurso de enseñanza-aprendizaje. Esta experiencia fue llevada a cabo con alumnos universitarios de primer año, típicamente pertenecientes a la generación Millennials. El diseño de la investigación utilizada fue no experimental y de tipo descriptivo. La muestra estuvo formada por estudiantes de Marketing (curso 1282 y 3040), que voluntariamente aceptaron participar en la investigación. Se utilizó como instrumento la encuesta y los resultados fueron procesados mediante el uso del programa SPSS 20. Entre las conclusiones más relevantes, se ha podido observar que la utilización de Kahoot! aumentó notablemente la motivación de los estudiantes, les permitió clarificar cuáles son los objetivos y los conceptos más relevantes de la asignatura y esperan poder utilizarlo en las demás materias que están cursando

    A Novel Heterozygous Deletion Variant in <i>KLOTHO</i> Gene Leading to Haploinsufficiency and Impairment of Fibroblast Growth Factor 23 Signaling Pathway

    No full text
    Hyperphosphatemia is commonly present in end-stage renal disease. Klotho (KL) is implicated in phosphate homeostasis since it acts as obligate co-receptor for the fibroblast growth factor 23 (FGF23), a major phosphaturic hormone. We hypothesized that genetic variation in the KL gene might be associated with alterations in phosphate homeostasis resulting in hyperphosphatemia. We performed sequencing for determining KL gene variants in a group of resistant hyperphosphatemic dialysis patients. In a 67-year-old female, blood DNA sequencing revealed a heterozygous deletion of a T at position 1041 (c.1041delT) in exon 2. This variation caused a frameshift with substitution of isoleucine for phenylalanine and introduction of a premature termination codon (p.Ile348Phefs*28). cDNA sequencing showed absence of deletion-carrier transcripts in peripheral blood mononuclear cells suggesting degradation of these through a nonsense-mediated RNA decay pathway. Experiments in vitro showed that p.Ile348Phefs*28 variant impaired FGF23 signaling pathway, indicating a functional inactivation of the gene. In the patient, serum levels of KL were 2.9-fold lower than the mean level of a group of matched dialysis subjects, suggesting a compromise in the circulating protein concentration due to haploinsufficiency. These findings provide a new loss-of-function variant in the human KL gene, suggesting that genetic determinants might be associated to clinical resistant hyperphosphatemia

    Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans

    No full text
    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus ß-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75 mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40 mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans
    corecore