435 research outputs found

    Entanglement of atoms via cold controlled collisions

    Get PDF
    We show that by using cold controlled collisions between two atoms one can achieve conditional dynamics in moving trap potentials. We discuss implementing two qubit quantum--gates and efficient creation of highly entangled states of many atoms in optical lattices.Comment: 4 pages 3 figure

    Multiple micro-optical atom traps with a spherically aberrated laser beam

    Full text link
    We report on the loading of atoms contained in a magneto-optic trap into multiple optical traps formed within the focused beam of a CO_{2} laser. We show that under certain circumstances it is possible to create a linear array of dipole traps with well separated maxima. This is achieved by focusing the laser beam through lenses uncorrected for spherical aberration. We demonstrate that the separation between the micro-traps can be varied, a property which may be useful in experiments which require the creation of entanglement between atoms in different micro-traps. We suggest other experiments where an array of these traps could be useful.Comment: 10 pages, 3 figure

    Nonperturbative and perturbative treatments of parametric heating in atom traps

    Get PDF
    We study the quantum description of parametric heating in harmonic potentials both nonperturbatively and perturbatively, having in mind atom traps. The first approach establishes an explicit connection between classical and quantum descriptions; it also gives analytic expressions for properties such as the width of fractional frequency parametric resonances. The second approach gives an alternative insight into the problem and can be directly extended to take into account nonlinear effects. This is specially important for shallow traps.Comment: 12 pages, 2 figure

    Quantum Logic Gates in Optical Lattices

    Full text link
    We propose a new system for implementing quantum logic gates: neutral atoms trapped in a very far-off-resonance optical lattice. Pairs of atoms are made to occupy the same well by varying the polarization of the trapping lasers, and then a near-resonant electric dipole is induced by an auxiliary laser. A controlled-NOT can be implemented by conditioning the target atomic resonance on a resolvable level shift induced by the control atom. Atoms interact only during logical operations, thereby suppressing decoherence.Comment: Revised version, To appear in Phys. Rev. Lett. Three separate postscript figure

    Cold bosonic atoms in optical lattices

    Full text link
    The dynamics of an ultracold dilute gas of bosonic atoms in an optical lattice can be described by a Bose-Hubbard model where the system parameters are controlled by laser light. We study the continuous (zero temperature) quantum phase transition from the superfluid to the Mott insulator phase induced by varying the depth of the optical potential, where the Mott insulator phase corresponds to a commensurate filling of the lattice (``optical crystal''). Examples for formation of Mott structures in optical lattices with a superimposed harmonic trap, and in optical superlattices are presented.Comment: 4 pages 4 figures New: added references; Postscript version available at: http://th-physics.uibk.ac.at/zoller/Publications/PZListOfPublications.htm

    Stochastic Phase Space Localization for a Single Particle

    Full text link
    We propose a feedback scheme to control the vibrational motion of a single trapped particle based on indirect measurements of its position. It results the possibility of a motional phase space uncertainty contraction, correponding to cool the particle close to the motional ground state.Comment: 9 pages, 1 figure. Concluding section and figure revised. In press on Phys. rev.

    AWAKE, the advanced proton driven plasma wakefield acceleration experiment at CERN

    Get PDF
    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the worldŚłs first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented

    Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch

    Get PDF
    We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1 x 10(14) and 7.7 x 10(14) electrons/cm(3). We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved and time-integrated measurements of the proton bunch transverse distribution. We evaluate the transverse wakefield amplitudes and show that they exceed their seed value (< 15 MV/m) and reach over 300 MV/m. All these results confirm the development of the seeded self-modulation process, a necessary condition for external injection of low energy and acceleration of electrons to multi-GeV energy levels
    • 

    corecore