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Abstract Optical property measurements on blood are
influenced by a large variety of factors of both physical and
methodological origin. The aim of this review is to list these
factors of influence and to provide the reader with optical
property spectra (250–2,500 nm) for whole blood that can be
used in the practice of biomedical optics (tabulated in the
appendix). Hereto, we perform a critical examination and selec-
tion of the available optical property spectra of blood in litera-
ture, from which we compile average spectra for the absorption
coefficient (μa), scattering coefficient (μs) and scattering anisot-
ropy (g). From this, we calculate the reduced scattering coeffi-
cient (μs′) and the effective attenuation coefficient (μeff). In the
compilation of μa and μ s, we incorporate the influences of
absorption flattening and dependent scattering (i.e. spatial cor-
relations between positions of red blood cells), respectively. For
the influence of dependent scattering on μs, we present a novel,
theoretically derived formula that can be used for practical
rescaling of μs to other haematocrits. Since the measurement
of the scattering properties of blood has been proven to be
challenging, we apply an alternative, theoretical approach to
calculate spectra for μs and g . Hereto, we combine Kramers–
Kronig analysis with analytical scattering theory, extended with
Percus–Yevick structure factors that take into account the effect
of dependent scattering in whole blood. We argue that our
calculated spectra may provide a better estimation for μs and
g (and hence μ s′ and μeff) than the compiled spectra from
literature for wavelengths between 300 and 600 nm.
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Introduction

The interaction of light with blood plays an important role in
optical diagnostics and therapeutics—for instance for the non-
invasive assessment of blood composition [1] and the laser
treatment of varicose veins [2]. Predictions on the accuracy
and outcome of these optical methods can be obtained through
simulation models of the light–blood interaction. The reliabil-
ity of these models depends foremost on accurate knowledge
of the optical properties of blood, which include the absorp-
tion coefficient μ a, scattering coefficient μ s and scattering
anisotropy g that parameterizes the phase function p (θ). Dat-
ing back to as early as 1943 [3], many studies have focused on
the quantitative assessment of these optical properties [4–10].
These studies demonstrated that optical property measure-
ments on whole blood are challenging, due to the considerable
light attenuation in undiluted blood. Although light attenua-
tion is less in diluted samples, rescaling of the optical proper-
ties from these samples to whole blood introduces an addi-
tional challenge because the scattering properties of blood
scale non-linearly as a function of red blood cell concentration
(haematocrit) [10–12]. As a consequence, sample preparation,
but also measurement method and conditions (e.g. blood flow
[7, 13–16]), influences the outcome of the optical property
assessment considerably. In this review article, we will there-
fore provide an overview, interpretation and compilation of
the available literature on the optical properties of blood in the
visible and near-infrared wavelength range (250–2,500 nm).
Our inclusion criteria are (1) publication of both quantitative
and spectrally resolved data on μ a, μ s and g and (2) the use of
human blood from healthy adults for sample preparation.

In part I (‘Methods’ and ‘Results’ sections) of this article,
we focus on the absorption coefficient of whole blood. We
compile an average μa spectrum for blood with a haematocrit
of 45 % from rescaled spectra that are available in literature,
while excluding outlier spectra. We also incorporate the effect
of ‘absorption flattening’: the phenomenon that the absorption
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spectrum of a system of strongly absorbing particles (i.e. red
blood cells in whole blood) is reduced compared to that of a
suspension containing the same number of absorbing mole-
cules in homogeneous dispersion (i.e. haemolysed blood).

The scattering properties of blood (μ s and g ) are consid-
ered in part II (‘Theoretical estimation of μs and g’, ‘Methods’
and ‘Results’ sections) of this article. Given the difficulty in
measuring the scattering properties of red blood cells, and the
relative ease of measuring absorption spectra of the red blood
cells’ contents, we previously proposed a computational ap-
proach based on a Kramers–Kronig analysis of the complex
refractive index of haemoglobin [17]. We obtained estimates
of red blood cell scattering by combining this approach with
analytical scattering theory. Here, we extend this method
using Percus–Yevick structure factors that take into account
the spatial correlations between the positions of individual red
blood cells in a whole blood medium. From this, we obtain
calculated spectra of μ s and g for oxygenized and
deoxygenized blood. Moreover, we present a novel scaling
relation for μ s to different haematocrit values, which we use to
theoretically verify a previously published empirical scaling
relation [11].We apply the novel scaling relation to rescale the
available literature spectra for μ s to a haematocrit of 45 %.
From the rescaled spectra, we compile an average μ s spectrum
for whole blood. We also provide a compiled spectrum of the
literature spectra of g . To provide the reader with reasonable
means to estimate the scattering coefficient, we present an
empirical power law for scattering coefficient versus wave-
length (>700 nm). In addition, we provide spectra for the
reduced scattering coefficient (μ s′) and the effective attenua-
tion coefficient (μ eff), derived from both the compiled and
calculated spectra of μa, μ s and g .

The main results of this article are ready-to-use compiled
spectra of μ a, as well as both compiled and calculated spectra
of μ s, μ s′, μ eff and g for whole blood with a haematocrit of
45 %. For convenience, these spectra are tabulated in the
Appendix of this article. Moreover, methods for scaling be-
tween different haematocrits are presented. We argue that our
calculated spectra may provide a better estimation of the
scattering properties of whole blood than the compiled spectra
from literature for wavelengths <600 nm.

Background

Composition of human blood and its optical properties

Normal human blood consists of red blood cells (RBCs or
erythrocytes, ±4,500×103/μL blood), white blood cells (leu-
kocytes, ±8×103/μL blood), platelets (thrombocytes, ±300×
103/μL blood) and blood plasma (containing water, electro-
lytes, plasma proteins, carbohydrates, lipids and various ex-
tracellular vesicles [18, 19]). The haematocrit (hct) is defined

as the volume percentage of red blood cells in blood and on
average amounts to 40 % for adult women and 45 % for adult
men. Red blood cells are composed mainly of haemoglobin,
with a concentration of ±350 g/L in a cell volume of ±90 fL. In
healthy human adults, the average haemoglobin concentration
in blood accounts for 140 g/L in women and 155 g/L in men
[19].

Accounting for an absorption contribution of two to three
orders of magnitude higher than the other blood components,
red blood cells are by far the most dominant absorbing element
in the blood in the wavelength range of 250–1,100 nm [20].
Practically, all light absorption by the red blood cells is due to
haemoglobin, which exhibits specific absorption features for its
various derivatives: bound to oxygen (oxyhaemoglobin,
HbO2), unbound to oxygen (deoxyhaemoglobin, Hb), bound
to carbon monoxide (carboxyhaemoglobin), oxidized
(methaemoglobin), fetal andmore [4]. From these haemoglobin
derivatives, oxyhaemoglobin and deoxyhaemoglobin are the
most abundant types in healthy human adult blood. The oxygen
saturation of blood is defined as the ratio of the HbO2 concen-
tration to the total haemoglobin concentration, oxygen satura-
tion (SO2)=[HbO2]/([HbO2]+[Hb]), and amounts to ∼97.5 %
in arterial blood and ∼75 % in venous blood [19]. Of all blood
particles, red blood cells also predominate the scattering of
blood with two to three orders of magnitude, arising from the
difference in refractive index between red blood cells and the
surrounding blood plasma [20].

Without the presence of red blood cells, plasma absorption
in the 250–1,100-nm region is dominated by various proteins,
nutritive compounds and/or pharmaceuticals, while plasma
scattering is dominated by proteins and platelets [20]. Under
pathological conditions, the absorption contribution of certain
plasma proteins can become significant even in the presence
of red blood cells, e.g. the absorption of bilirubin around
460 nm for jaundiced patients [21].

In the wavelength range beyond 1,100 nm, blood absorp-
tion is dominated by the absorption of water [7, 9]. Only when
water is removed from the blood, several absorption features
due to the presence of haemoglobin, albumin and globulin can
be identified as small absorption peaks between 1,690 and 2,
400 nm [22].

Factors influencing the optical properties of blood

Since red blood cells are the main contributor to the optical
properties of blood, their volume percentage (i.e. haematocrit),
haemoglobin concentration and oxygen saturation directly in-
fluence the absorption and scattering properties of blood.
Whereas the absorption coefficient μa is proportional to the
haematocrit, the scattering coefficient μ s saturates for hct>
10 %, i.e. μ s, is underestimated for high hct values with respect
to a linear relationship between the two parameters [10].
Meinke et al. [10], in our opinion correctly, ascribed this

454 Lasers Med Sci (2014) 29:453–479



saturation effect to a decrease of the mean distance between red
blood cells, because it violates the assumption of independent
single scattering. This group also reported non-linear deviations
of g for hct>10 %. See part II section of this paper for further
discussion.

The scattering of blood is primarily caused by the complex
refractive index mismatch between red blood cells and plas-
ma. Although most measurements on the optical properties of
blood are performed on blood samples where plasma has been
replaced by saline/phosphate buffer, Meinke et al. [10, 20]
measured that this affects the complex refractive index
mismatch considerably, resulting in an overestimation of the
scattering coefficient of 5.5–9.4 % with respect to red blood
cells in plasma.

The principle of causality dictates that the real and imagi-
nary parts of the complex refractive index are connected as
expressed by the Kramers–Kronig relations. The imaginary
part is proportional to the absorption coefficient, which in turn
depends on the SO2. Thus, the real part of the complex
refractive index is also SO2 dependent and so are the scatter-
ing properties [9, 17]. This influence is most prominent in the
visible wavelength region where differences in μ a due to
changes in SO2 are high, leading to deviations up to 15 % in
μ s and 12 % in g between fully oxygenated and fully deox-
ygenated blood [9].

Various sources have reported that the shear rate due to
blood flow [7, 13–16] and aggregate formation (e.g. rouleaux
formation) [13, 23, 24] significantly influence the optical
properties of blood due to non-Newtonian flow characteris-
tics. Enejder et al. [13] measured a decrease in the absorption
and reduced scattering of bovine blood of ∼3 % when increas-
ing the average shear rate from 0 to 1,600 s−1, as well as a
decrease in reduced scattering of 4 %when randomly oriented
red blood cells form aggregates.

Other reported factors of influence on the optical properties
are osmolarity [7], temperature [25, 26], inter-person variabil-
ity [9] and pathologic disorders such as sickle cell anemia
[27]. A special case is that for adults versus fetuses, whose
blood is composed of different types of haemoglobin (adult
versus fetal haemoglobin) that exhibit slight variations in their
absorption features [4].

Measurement methods in literature

Most measurements on whole or diluted blood with intact red
blood cells have been performed using single or double inte-
grating sphere geometries. The resulting wavelength-
dependent transmission and/or reflectance from a thin sample
slab is analysed by inverse Monte Carlo models [6–10] or T-
matrix computations [13] to obtain estimates for μa, μ s and g .
As is acknowledged by various sources [6–8], the assumed
scattering phase function of blood in the inverse Monte Carlo
analysis highly influences the inferred optical properties—

especially μ s and g . Although other measurement methods
have been reported for optical property measurements on
whole blood [28, 29], we did not encounter any studies that
exploit these methods experimentally or the quantitative as-
sessment of spectra of μa, μ s and g .

In addition to whole blood measurements, non-scattering
haemolysed blood has been investigated in conventional
transmission measurement geometries to assess the μ a of
haemoglobin only [4, 5].

The refractive index of oxygenated haemoglobin solutions
was determined by Friebel et al. [30] from measurements of
the Fresnel reflection with an integrating sphere spectrometer.
Complementing these measurements, Meinke et al. [10] mea-
sured the refractive index of plasma at four wavelengths using
an Abbe refractometer, which yielded a Sellmeier equation for
the visible wavelength range.

Part I: the absorption coefficient of whole blood

Methods

From the available optical property spectra in literature, we
compiled the averaged spectra of μ a for whole blood with a
haematocrit of 45 %. Criteria for including optical property
data were (1) publication of both absolute and spectrally
resolved data on the optical properties and (2) the use of
human blood from healthy adults for sample preparation. In
case tabulated data were unavailable, the program GetData
Graph Digitizer (v2.25.0.32) was used to obtain the digitized
optical property spectra from the published graphs. The same
criteria were applied for the inclusion and tabulation of liter-
ature spectra for μ s and g , which will be considered in part II
of this article.

Compiled literature spectrum of μa

All spectra were resampled to a 1-nm increment wavelength
axis. Depending on the description of sample concentration in
hct or total haemoglobin (tHb), the μ a spectra were rescaled to
a hct of 45 % or an equivalent tHb concentration of 150 g/L.
Linear rescaling of μa spectra with respect to hct=X%, i.e.
μ a,hct=45 %= (45/X ) and μ a,hct=X%, yields incorrect
results if the absorption by the medium (water or plasma)
cannot be neglected. This leads to an overestimation of the
μ a spectra at wavelengths where water absorption is substan-
tial (λ >1,100 nm). We therefore perform a correction for the
water absorption on the linearly rescaled μ a spectra:

μa;hct¼45% ¼ 45

X
μa;hct¼X% − μa;H2O

f blood½ �hct¼X%

� �
þ μa;H2O

f blood½ �hct¼45 %

ð1Þ
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Here, μa,hct=45 % is the rescaled μa spectrum to 45 % hct,
μ a,hct=X% is the literature μ a spectrum at X%hct and μa,H2O is
the absorption coefficient of pure water, for which we used the
spectrum from Hale et al. [31]. The water volume fraction
[fblood] in blood with hct=X% is obtained using:

f blood½ �hct¼X% ¼ 1−
X

100

� �
f plasma þ

X

100
f RBC ð2Þ

where fplasma and fRBC are the water volume fractions in blood
plasma and red blood cells, respectively. In our analysis, we
used fplasma=0.90 and fRBC=0.66, which correspond to nor-
mal physiological water concentrations in plasma and red
blood cells [7]. Equations 1 and 2 show that the correct scaling
between haematocrits at a given wavelength depends on the
absorption coefficient of water at that wavelength.

For the absorption spectra that were measured on non-
scattering homogeneous haemoglobin solutions, also the ab-
sorption flattening effect should be taken into account when
rescaling the μ a to that of whole blood. Citing Friebel et al.
[8], the absorption flattening effect can be described as: ‘when
light passes through a suspension of absorbing particles, such
as blood, photons that do not encounter red blood cells pass
unattenuated by absorption. As a consequence, the transmitted
light intensity is higher than it would be if all the haemoglobin
were uniformly dispersed in the solution’, Duysens [32]
quantitatively described the reduction of the absorption
coefficient obtained from a suspension of particles, with
respect to that of a solution in which in the same amounts of
absorbing molecules are homogeneously distributed. Follow-
ing the method of Duysens, adapting only the terminology, we
arrive at:

μa;blood ¼ 1−e μa;Hb⋅dRBCð Þ
μa;Hb⋅dRBC

 !
μa;Hb ð3Þ

Where μa,blood and μ a,Hb are the absorption coefficient of a
blood sample and haemoglobin solution, respectively. The
length dRBC is a typical dimension of a red blood cell.
In this derivation, it was assumed that the RBCs can be
represented by cubes with volume equal to an RBC
(dRBC=

3√90 μm). Following the same approach, Finlay
and Foster [33] derived a more complex version of
Eq. 3, valid for equivolumetric spherical particles. Since
the difference between both forms is neglicable for the
present parameters, we adhere to the much simpler form of
Eq. 3 throughout this manuscript.

The compiled spectra of μ a were obtained by averaging the
rescaled spectra, with the exclusion of one outlier spectrum, as
specified in the ‘Results’ section. The μ a spectra for
oxygenized (nine averages) and deoxygenized blood (three
averages) were compiled separately.

Results

Optical property spectra of human blood in literature

The available literature on optical property measurements
within our inclusion criteria is summarized in Table 1, with
the relevant information (based on the factors of influ-
ence that have been listed in the ‘Factors influencing the
optical properties of blood’ section) that was available on
measurement method and sample preparation. All spectra
from samples with intact red blood cells were obtained using
integrating sphere measurements in combination with inverse
Monte Carlo simulations. Phase functions that were applied in
the analysis of these literature spectra included the Henyey–
Greenstein [6], the Gegenbauer–Kernel [7] and the Reynolds–
McCormick phase function [8–10]; details can be found in the
respective references. The Gegenbauer–Kernel and the Reyn-
olds–McCormick phase function cited in these publications
are the same [34]. Compiled spectra of the absorption coeffi-
cient of Hb and HbO2 solutions are available from Zijlstra [4]
and Prahl [5].

Compiled literature spectrum of μa

Figure 1a, b displays the rescaled μa spectra to hct=45 % for
oxygenized blood (SO2>98 %) and deoxygenized blood
(SO2=0 %), respectively. For both oxygenized and
deoxygenized blood, the rescaled μa spectra of Roggan et al.
[7] consistently overestimate the other μ a spectra for nearly all
wavelengths up to one order of magnitude. Roggan et al.
obtained this overestimation with respect to pure haemoglobin
and water solutions also for the original sample haematocrit of
5 %, and ascribed the difference to an increased probability of
absorption due to elongated photon paths, resulting from
internal photon reflections inside the red blood cells. When
rescaling these values to hct=45 %, the overestimation is
magnified to unrealistically high values for μ a, in spite of
the applied correction for the water absorption. We therefore
excluded the μa spectra of Roggan et al. from the compiled
spectra.

The spectra of haemolysed blood from Zijlstra [4] and
Prahl [5] in Fig. 1a, b have been rescaled with the absorption
flattening factor from Eq. 3. Unscaled, the μa spectrum of
haemolised blood overestimates the absorption of both
oxygenized and deoxygenized blood with approximately
10–20 % at the Soret band around 420 nm [5]. This
difference has also been measured by Friebel et al. [8]
when they compared their μa spectra from samples containing
intact red blood cells to those containing haemolysed blood at
exactly the same concentrations of haemoglobin. After
correcting for the absorption flattening, the spectra are in
good agreement with the absorption spectra from (whole)
blood measurements.
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The compiled μ a spectrum of oxygenized blood is com-
posed of the average of N =9 spectra (Fig. 1c). Due to the
difficulty to fully deoxygenize blood (high oxygen affinity of
haemoglobin), fewer literature spectra are available for
deoxygenized blood—resulting in a compiled μ a spectrum
of the average of N =3 spectra for deoxygenized blood
(Fig. 1c). Note that the data from Friebel et al. [9] are the only
data contributing to the compiled spectrum beyond 1,200 nm
for oxygenized blood and beyond 1,000 nm for deoxygenized
blood (indicated by the dashed lines in Fig. 1c). The sudden
jumps in the compiled spectra at 1,200 and 1,000 nm are caused
by this transition of the average of multiple spectra to only one
spectrum that differs slightly in amplitude (∼0.1 mm−1) from
the other spectra. We consider these jumps as artifacts of our
compilation method, which can be ignored or smoothed when
using these spectra in practice.

Part II: the scattering properties of whole blood

The determination of the scattering properties of whole blood
is extremely challenging because assumptions on the applied
scattering phase function are of high influence and the scaling
of diluted blood measurements to physiological haematocrit
values is not straightforward (‘Background’ section). In our
previous work, we therefore proposed to use a ‘forward’
approach to estimate the light scattering properties from accu-
ratemeasurements of the absorption coefficient of haemoglobin
solutions, followed by Kramers–Kronig (KK) analysis and

application of light scattering theory [17]. We expand on this
theoretical approach here to include dependent scattering
effects.

In the first step, the complex refractive index is determined
from the absorption coefficient of the contents of one red blood
cell. This is used as input to scattering theory in the second step,
accounting for inter-particle correlations due to high-volume
fractions. This way, the theoretical scattering property spectra
of blood can be calculated for any haematocrit at any wave-
length. We use this theory to obtain calculated spectra for μ s

and g for whole blood with a haematocrit of 45 %.
For practical convenience, we proceed to average the scal-

ing factors for μ s over wavelength, which leads to a simple
expression depending on haematocrit only. This novel scaling
relation is then used to rescale literature spectra of μ s to a
haematocrit of 45 %, from which we compile an average
spectrum.

Summarizing, in this part II of the article, we provide both
calculated and compiled literature spectra for μ s and g . From
this, we calculate the reduced scattering coefficient μ s′ and
effective attenuation coefficient μ eff for whole blood.

Theoretical estimation of μ s and g

Kramers–Kronig analysis

Causality dictates a functional relationship between the real and
imaginary parts of the complex refractive index. This relation is
expressed by the Kramers–Kronig integral dispersion equations.

Table 1 Literature on the optical properties of blood in the visible and near-infrared

Reference Wavelength
range (nm)

Method Sample Optical
properties

Zijlstra et al. [4] 450–800 Transmission
spectrophotometer

Hb solution from haemolysed RBCs (human); SO2=0, 100 %; T=20–24 °C μa

Prahl [5] 250–1,000 Compiled data from
Gratzer and Kollias

Hb solution from haemolysed RBCs; SO2=0, 100 % μa

Yaroslavsky
et al. [6]

700–1,200 Double IS with inverse
MC (PHG)

Fresh heparinized whole blood (human); hct=45–46 %, SO2>98 %;
no flow, γ =0 s−1

μa, μs, g

Roggan et al. [7] 400–2,500 Double IS with inverse
MC (PGK)

Fresh RBCs (human) in phosphate buffer; hct=5 %; SO2=0, 100 %;
in flow, γ=500 s−1; T =20 °C

μa, μs, g

Friebel et al. [8] 250–1,100 IS with inverse MC (PRC) Fresh RBCs (human) in phosphate buffer; hct=0.84, 42.1 %; SO2>99 %;
in flow, γ=600 s−1; T =20 °C

μa, μs, g

Friebel et al. [9] 250–2,000 IS with inverse MC (PRC) Fresh RBCs (human) in phosphate buffer; hct=33.2 %; SO2=0, 100 %;
in flow, γ=600 s−1; T =20 °C

μa, μs, g

Meinke et al. [10] 250–1,100 IS with inverse MC (PRC) Fresh RBCs (human) in phosphate buffer and saline solution/plasma various
samples between hct=0.84 and 42.1 %

(shown in Figs. 1, 3 and 4: hct=8.6, 41.2 %); SO2>98 %; in flow,
γ=600 s−1; T=20 °C

μa, μs, g

PGK and the PRC are identical phase functions [34].

IS integrating sphere,MC Monte Carlo,PHG Henyey–Greenstein phase function, PGK Gegenbauer–Kernel phase function, PRC Reynolds–McCormick
phase function, RBCs red blood cells, hct haematocrit, SO2 oxygen saturation, γ shear rate, T temperature, μa absorption coefficient, μ s scattering
coefficient, g anisotropy factor
a The μa spectra of Roggan are excluded from the compiled spectra, as discussed in ‘Compiled literature spectrum of μa’ section
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The imaginary part κ (ω ) of the complex refractive index
m(ω)=n(ω)+iκ(ω) is related to the absorption coefficient μa

through:

κ ωð Þ ¼ cμa ωð Þ
2ω

ð4Þ

where c is the speed of light and ω is the angular frequency of
the light. We use a subtractive KK equation [17, 35], so that:

n ωð Þ ¼ n ω0ð Þ þ 2

π
ω2 þ ω2

0

� �
P

Z ∞

0

ω0κ ω0ð Þ
ω2 þ ω0ð Þ ω2

0−ω0� �dω0ð5Þ

where n (ω0) is the refractive index at some reference frequency
ω0, providing scaling of the calculated spectra. P denotes the
Cauchy principle value of the integral. Thus, knowledge of the
absorption spectrum of the haemoglobin solution inside an
RBC, in combination with a reference value for the refractive
index, allows determination of the complex refractive index of
the solution at any given frequency ω (or wavelength λ =c /ω).

Scattering properties of red blood cells

The scattering properties of a single red blood cell
(cross section and anisotropy) are calculated from the
angularly resolved scattered intensity IS(θ ), per unit input
intensity [36]. The scattering cross section [in square metre]
is given by:

σS ¼ 2π

k2

Z π

0
IS θð Þsinθdθ ð6Þ

where k is the wave number k =2π /λ . By normalization of
IS(θ ) on its 4π solid-angle domain, the phase function pP(θ)
is obtained, which is parameterized by the expectation
value of the cosine of the scattering angle, the scattering
anisotropy g [−]:

g ¼ 2π

σSk
2

Z π

0
cosθ⋅IS θð Þsinθdθ ð7Þ

Fig. 1 Blood absorption coefficient spectra from literature (see Table 1)
within our inclusion criteria, rescaled to hct=45 %: a μa for oxygen
saturation (SO2)>98 %, b μa for SO2=0 %, c compiled μa spectra for
whole blood with a haematocrit of 45 %. The jumps around 1,000 and 1,
200 nm in the compiled spectra are artifacts of our compilation method

(caused by the transition of the average of multiple spectra to only one
spectrum), which can be ignored or smoothed when using these spectra in
practice. The spectra from haemolysed blood (Zijlstra and Prahl) in a and
b) have been corrected for absorption flattening, see legend
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These scattering properties can be calculated if an appro-
priate theory is available to calculate IS(θ ). A common
approach yielding reasonable agreement with experiment
[37] is to describe the RBC as a sphere with an equiv-
alent volume (90 μm3, ‘Composition of human blood and its
optical properties’ section) using Mie theory.

Scattering properties of whole blood

We model light scattering of a blood medium by the angular
resolved scattered intensity of a collection of N randomly
distributed, identical particles:

IS θð Þ ¼ 〈
XN

m ¼ 1

XN

n ¼ 1
ES;mE

�
S;n
eiq rm−rnð Þ〉 ð8Þ

where E* denotes the complex conjugate of E . The ensemble
average runs over all possible arrangements of the particles in
volume VT (that contains all particle contributing to the sig-
nal). E s,n denotes the scattered field amplitude of the n th
particle, located at rn. The scattering vector q has magnitude
|q |=2ksin(θ /2).

The terms m=n in the double sum define the light distri-
bution when no interference between the scattered fields from
different particles occurs, e.g. in a dilute medium. This
condition is called ‘independent scattering’, and the total
scattering cross section is simply N times the scattering
cross section of a single particle. The scattering coefficient (or
density of the scattering cross section, [in meter]) follows from
μ s=σ s,TOTAL/VT or:

μs;independent ¼ N
σS

VT

¼ hct

VP

σS ð9Þ

with hct the particle volume fraction and V p the particle
volume.

If the particles are closely spaced, or when correlations
between the particle positions are present, the interference
effects cannot be ignored. This condition, usually called de-
pendent scattering in the biomedical optics literature, takes
into account the m≠n terms as well. Their contribution de-
pends on the ordering in the arrangement of the particles,
characterized by the radial distribution function G (r ) which
describes the probability of finding two particles spaced a
difference r apart. We may write [38, 39]:

IS;dependent θ; hctð Þ ¼ IS;independent θð Þ⋅S θ; hctð Þ
S θ; hctð Þ ¼ 1þ 4π

hct

VP

Z ∞

0
G rð Þ−1f gr2sinqr

qr
dr

8<
: ð10Þ

where |q |=2ksin(θ /2). The term S (θ ,hct) is called the structure
factor, which thus allows to describe the angular scattering
pattern from an ensemble of particles in terms of the scattered
intensity pattern of a single particle, by applying a hct-
dependent angular weighting of the scattered light. Combining

Eq. 10 with Eq. 6, the scattering cross section for dependent
scattering is found as:

σS;dependent ¼ γ hctð ÞσS;independent

γ hctð Þ ¼ 2π
Z π

0
S θ; hctð ÞpP θð Þsinθdθ

8<
: ð11Þ

where γ (hct) is the haematocrit-dependent scaling factor be-
tween the scattering cross section for dependent scattering and
independent scattering, and pP(θ ) is the single-particle phase
function. The scattering coefficient follows as:

μs;dependent ¼
N

VT

σS;dependent ¼ hct

VP

σS;dependent

¼ γ hctð Þμs;independent

ð12Þ

Expressions for the phase function and scattering anisotropy
for dependent scattering can also be derived using the same
methods.

Thus, the scattering properties of the blood medium can be
calculated, provided a description for the radial distribution
function G (r ) is available (such as the Percus–Yevick model
for non-deformable spheres used in this work). Scaling of the
scattering coefficient between haematocrit values takes the
following form for a blood medium:

μs;dependent;hct2 ¼
γ hct2ð Þ
γ hct1ð Þ

hct2

hct1
μs;dependent;hct1 ð13Þ

Practical formula for haematocrit dependent scaling of μ s

From the preceding analysis, it is clear that γ(hct)—the factor
ultimately for non-linear scaling of the scattering coefficient
with hct—can be a complicated function of wavelength be-
cause both S (θ ,hct) and pP(θ ) are wavelength dependent.
However, some practical expressions for γ(hct), depending
on haematocrit only, have been presented in the literature.

The best known is Twersky’s formula, which starts with the
structure factor of Eq. 10 and employs a ‘small particle’ as-
sumption replacing S (θ ,hct) with S (0,hct) and uses
pP(θ)=(4π)

−1 [40–42] so that the integral over the radial dis-
tribution function G(r) is evaluated at q =0 (or θ =0). Assum-
ing scatterers of radius rp that do not attract or repulse each
other (‘gas model’), we have G(r)=0 (r ≤rp); G(r)=1 (r >rp).
This leads to the simple expression:

γTWERSKY�gas hctð Þ ¼ 1−hct ð14Þ
Following the same procedure using the radial distribution

function of a collection of non-deformable small spheres gives:

γTWERSKY�spheres hctð Þ ¼ 1−hctð Þ4
1þ 2hctð Þ2 ð15Þ

Both relations have been tested and have been found to be
only in moderate agreement with experimental results on
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blood [11]. Based on their experiments, Steinke et al. therefore
provide the following empirical relation:

γSTEINKE hctð Þ ¼ 1−hctð Þ 1:4−hctð Þ ð16Þ
We compute γ (hct) at each wavelength using Eqs. 10 and

11 without restrictions on particle size, using the Mie phase
function and the Percus–Yevick radial distribution function
for non-deformable spheres. Averaging γ (hct, λ ) over all
wavelengths (250–2,000 nm) and both oxygenated forms
and using a Levenberg–Marquardt non-linear least squares
curve fitting procedure of γ (hct) versus hct yields the follow-
ing approximation:

γMIE−PY hctð Þ ¼ 1−hctð Þ 0:98� 0:02−hctð Þ≈ 1−hctð Þ2 ð17Þ

For completeness, we give the equation relating the scat-
tering coefficient of a blood sample (assuming dependent
scattering) of given haematocrit to the scattering cross section
of a single RBC as:

μS;blood ¼ 1−hctð Þ2 hct

VRBC

σS;RBC ð18Þ

Equations 17 and 18 are thus one of the main practical
results of our work.

Methods

Calculated spectra of μ s and g

To compute the complex refractive index of an RBC’s con-
tents, we model the RBC as a sphere (90 μm3), containing a
homogeneous solution of haemoglobin molecules. Hereto, we
use the average of the oxygenized and deoxygenized μ a

spectra of haemolysed blood from Prahl and Zijlstra only (part
I)—rescaled to the appropriate concentration (350 g/L per
RBC; ‘Composition of human blood and its optical properties’
2.1), but not corrected for absorption flattening. Using Eq. 4,
the imaginary part of the complex refractive index is obtained.
In the Kramers–Kronig analysis (Eq. 5), we use a reference
measurement of the real part of the complex refractive index at
800 nm to scale the computed spectra. Details of this proce-
dure can be found in our previous publication [17]. The
obtained complex refractive index spectra of oxygenized and
deoxygenized blood are then used as input for subsequent
calculations.

To implement the theory of Eqs. 6–13, a consistent com-
bination of scattering theory and structure factor is needed.
Here, we use the Mie theory [36] to calculate the scattered
intensity and scattering properties by approximating a red
blood cell with an equivolumetric sphere (r =2.78 μm). Mie
calculations also require specification of the refractive index
of the medium in which the scattering particles are suspended

(i.e. plasma). The refractive index of plasma has been deter-
mined experimentally by Streekstra et al. [43] at 633 nm and
by Meinke et al. [9] at 400, 500, 600 and 700 nm. Since no
data is available on the entire required wavelength range
(including the near-infrared), we approximate the refractive
index of plasma by that of water [31] with an additional offset
to achieve a value of 1.345 at 633 nm [43]. This agrees well
with the values of Meinke et al. in the visible wavelength
range.

We use the Percus–Yevick approximation [44], solved
analytically by Wertheim [45], to calculate the structure factor
of a suspension of non-deformable spheres. The exact descrip-
tions of the Percus–Yevick radial distribution function can be
found elsewhere, e.g. in Refs. [39, 45]. All calculations are
performed using self-written routines in Labview. The
Kramers–Kronig code is benchmarked against the rou-
tines available from Ref. [35]; the Mie code is benchmarked
against the results from Prahl’s web-based Mie calculator
[46].

Compiled literature spectra of μ s and g

The available literature on optical property measurements of
μ s and g within our inclusion criteria (‘Methods’ section) is
summarized in Table 1. All spectra were obtained using inte-
grating sphere measurements in combination with inverse
Monte Carlo simulations. Phase functions that were applied
in the analysis of these literature spectra included the Henyey–
Greenstein [6], the Gegenbauer–Kernel [7] and the Reynolds–
McCormick phase function [8–10]; details can be found in the
respective references. The Gegenbauer–Kernel and the Reyn-
olds–McCormick phase functions cited in these publications
are the same [34].

We rescaled the μ s spectra from their original haematocrits
(hct=X%) to a whole blood haematocrit of 45% using Eqs. 13
and 17. From the rescaled spectra (N =8), we compiled an
average spectrum. The compiled spectrum of the anisotropy g
was obtained from the average of the unscaled literature
spectra of g (N =9).

Scatter power analysis on μ s

The scattering coefficient of most biological tissues exhibits a
power law dependency on wavelength in the wavelength
regions where μ a is low with respect to μ s. This power
dependency can be described by:

μs ¼ a⋅
λ
λ0

� �−b

ð19Þ

with scaling factor a (in millimetre), scatter power b
(dimensionless), scattering coefficient μ s (in millimetre),
wavelength λ and reference wavelength λ0. To summarize
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the obtained μ s spectra of blood, we determined the parame-
ters a and b for both the calculated and compiled spectra.
Hereto, we fitted Eq. 19 to the spectra beyond 700 nm
with a least squares algorithm, using λ 0=700 nm. Error
estimations were obtained from the 95 % confidence intervals
of the fits.

Reduced scattering μ s′ and effective attenuation μ eff

In general, studies that rely on the diffuse reflectance or
transmittance of whole blood consider the reduced scattering
coefficient μ s′=μ s(1−g ) and the effective attenuation coeffi-
cient μ eff=√[3μ a(μ a+μ s′)], rather than the scattering coeffi-
cient μ s and absorption coefficient μa only. Therefore, we
present the compiled spectra of μ s′ and μ eff, using the com-
piled spectra from literature for μ a, μ s and g . We also present
theory-derived spectra of μ s′ and μ eff, using the calculated
spectra for μa, μ s and g , with μ a obtained as μ a=μ ext−μ s

with μ ext the calculated extinction coefficient from Mie
theory.

Results

Calculated spectra of μ s and g

Figure 2a shows the results of the Kramers–Kronig analysis to
obtain the real part of the complex refractive index and for
reference the experimental values obtained by Friebel et al.
[30]. Also shown is the refractive index of plasma. Subpanels
b and c of Fig. 2, respectively, show the calculated spectra of
the scattering coefficient and anisotropy for both oxygenated
and deoxygenated blood. Figure 2d shows the reduced scat-
tering coefficient μ s′, obtained from the calculated spectra of
μ s and g. Results of the same calculations using the refractive
index from Friebel et al. as input are also shown.

Compiled literature spectrum of μ s

Figure 3a shows the unscaled literature spectra of μ s at their
original haematocrit values (all measured at SO2>98 %). To
rescale these spectra to hct=45 %, we apply our Mie/Percus–

Fig. 2 Theoretical analysis (Kramers–Kronig/Percus–Yevick) of the
scattering properties of whole blood: a real part of the refractive index,
b scattering coefficient, c scattering anisotropy (oxygenized and
deoxygenized spectra overlap), d reduced scattering coefficient. For

comparison, we also calculated the optical properties using the measured
refractive index of aqueous haemoglobin (SO2>98 %) from Friebel et al.
[30] (grey lines), instead of the calculated refractive index through the
Kramers–Kronig analysis
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Yevick scaling relation (Eqs. 13 and 17 combined), which has
been displayed in Fig. 3b. For comparison, also a linear
scaling relation (hct/X ) and the scaling relations of
Twersky (Eqs. 13 and 14 combined and Eqs. 13 and
15 combined) [40, 41] and Steinke et al. (Eqs. 13 and
16 combined) [11] have been displayed. Figure 3c
shows that the rescaled literature spectra using Eqs. 13
and 17 are much closer together in magnitude, compared to
the unscaled spectra in Fig. 3a. The compiled average μ s

spectrum from the rescaled spectra (N =8) agrees well in
shape and magnitude with the calculated μ s spectra for those
wavelengths where scattering dominates absorption (beyond
700 nm, Fig. 3d). Comparable to the compiled spectrum ofμ a,
the jump in μ s around 1,200 nm is an artifact of our compi-
lation method, caused by the transition of the average of
multiple spectra to fewer spectra.

Scatter power analysis on μ s

The scatter power analysis (Eq. 19) resulted in a values of
82.5±0.2 mm−1 (calculated μ s, SO2>98 %), 72.2±0.2 mm−1

(calculated μ s, SO2=0 %) and 91.8±0.6 mm−1 (compiled μ s,
SO2>98 %) using reference λ0=700 nm. The scatter power b
values were 1.23±0.005 (calculated μ s, SO2>98 %), 1.22±
0.006 (calculated μ s, SO2>0 %) and 1.19±0.012 (compiled
μ s, SO2>98 %).

Compiled literature spectrum of g

Although a non-linear dependency of g on haematocrit has
been reported (‘Background’ section), we do not perceive this
effect in the literature spectra of g at the original haematocrit
values (Fig. 4a). The compiled spectrum for g (Fig. 4b) is

Fig. 3 a Scattering coefficient spectra of blood from literature (see
Table 1) within our inclusion criteria, displayed for their original hcts
(hct=X%). b Scaling factors for rescaling μs at hct=X% to hct=45 %:
linear, according to Twersky for gas (Eqs. 13 and 14 combined) and
spheres (Eqs. 13 and 15 combined) [40, 41], according to Steinke et al.
(Eqs. 13 and 16 combined) [11] and our new scaling relation according to
Mie/Percus–Yevick theory (Eqs. 13 and 17 combined). c Rescaling of the
literature μ s spectra (SO2>98 %) from their original hct (X%) to hct=

45 % using Eqs. 13 and 17. d Compiled μ s spectrum for whole blood
(SO2>98%) with a haematocrit of 45% (i.e. the average of the spectra in
Fig. 3c). For comparison, also the calculated μs spectra from Fig. 2b are
displayed. The jump around 1200 nm in the compiled μ s spectrum is an
artifact of our compilationmethod (caused by the transition of the average
of multiple spectra to fewer spectra), which can be ignored or smoothed
when using these spectra in practice
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therefore obtained using all available, unscaled spectra
(N =9). Note that the data from Roggan et al. [7] are
the only data contributing to the compiled spectrum
beyond 2,000 nm (indicated by the dashed line in
Fig. 4b). The large oscillations in g in this wavelength
region are ascribed by Roggan et al. to ‘the small
values of the measured quantities’, indicating a low
signal-to-noise ratio for these wavelengths. Comparable
to the compiled spectra of μ a and μ s, the jump in g
around 1,200 nm is an artifact of our compilation meth-
od, caused by the transition of the average of multiple
spectra to fewer spectra. The compiled literature spec-
trum of g agrees well in magnitude with the calculated
spectra of g for those wavelengths where scattering
dominates absorption (beyond 700 nm).

Reduced scattering and effective attenuation

Figure 4c shows the calculated and compiled reduced scatter-
ing coefficient spectra μ s′, which were obtained using the

calculated and compiled spectra of μ s and g , respec-
tively. Similar to the spectra of μ s and g , the calculated
and compiled μ s′ spectra agree well in magnitude for
those wavelengths where scattering dominates absorption (be-
yond 700 nm).

Figure 4d shows the calculated and compiled effective
attenuation coefficient spectra μeff. For the calculated spec-
trum of μeff, the absorption coefficient was calculated using
Mie theory as the difference between the extinction coefficient
and scattering coefficient (for both SO2=0 % and SO2>
98 %). The compiled spectra were obtained using both
the compiled spectrum for μ a (part I) and the compiled
spectrum for μ s′ (only for SO2>98 %). The absorption
coefficient dominates μ eff. The excellent correspondence
between the calculated and compiled spectra thus dem-
onstrates that scattering theory is capable of including
absorption flattening effects. The jumps in the 1,100–1,
200 nm region and/or the oscillations beyond 2,000 nm
in μ s′ and μ eff are caused by the compilation artifacts in
μ a, μ s and g that have been explained above.

Fig. 4 a Scattering anisotropy spectra of blood from literature (see
Table 1) within our inclusion criteria, displayed for their original hcts. b
Compiled spectrum forg ; for comparison, also the g spectra from Fig. 2c
are displayed. c Compiled μ s′ spectrum for whole blood with a

haematocrit of 45 %; for comparison, also the μs′ spectra from Fig. 2d
are displayed. d Compiled and calculated μeff spectra spectrum for whole
blood with a haematocrit of 45 %, for oxygenized (SO2>98 %) and
deoxygenized blood (SO2=0 %)
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Final remarks

Tabulated data

In the Appendix of this article, we provide the tabulated data
for the compiled spectra of μ a (oxygenated and deoxygenated
blood), μ s and g . The table also includes the calculated spectra
for μ s and g (Kramers–Kronig/Percus–Yevick analysis for
oxygenated and deoxygenated blood). All spectra are scaled
to a haematocrit of 45 %. The data are presented with a
resolution of 2 nm up to 600 nm and a resolution of 5 nm
beyond 600 nm. From this, the calculated and compiled spectra
for μ s′ and μeff can easily be calculated. The full table can also
be downloaded at our website www.biomedicalphysics.org.

Discussion

Compilation of optical property spectra from literature

In this article, we provided an overview of the available
literature on the spectra of the optical properties (μa, μ s

and g ) of whole blood. Hereto, we included only data that
present quantitative spectra of these properties and were
measured on human blood or dilutions thereof. These
restrictions limit the available data to the seven contribu-
tions as listed in Table 1, from which five contributions
are obtained from (dilutions of) whole blood (μa, μ s and g ),
and two contributions are obtained from haemolysed blood
(μ a only). It should also be noted that experimental studies on
the optical properties are scarce for wavelengths beyond 1,
100 nm, compared to the visible and near-infrared wavelength
range (λ <1,100 nm). Hence, our compiled spectra beyond 1,
100 nm are composed of only one (μ a and μ s) or two (g )
literature spectra, which makes them more susceptible to
experimental or methodological errors than the compiled
values for λ <1,100 nm.

The compiled spectra for μ s and g are largely dominated
by the results from one research group (Roggan et al., Friebel
et al. andMeinke et al. [7–10]), with three out of four literature
spectra for μ s and eight out of nine literature spectra forg . All
spectra were obtained using integrating sphere setups, in
combination with inverse Monte Carlo simulations (IS/iMC,
to translate the measured diffuse reflectance and/or collimated
and diffuse transmittance to values of μ a, μ s and g ). The
results of the inverse procedure depend highly on the phase
function that is used in the Monte Carlo simulations. For the
research group of Roggan et al., Friebel et al. and Meinke
et al., the preferred phase function is the Reynolds–McCor-
mick (also called Gegenbauer–Kernel [34]) phase function.
The authors argue that this phase function has better corre-
spondence with their measurements than the often used
Henyey−Greenstein phase function or theMie phase function.
This result can be understood considering Eq. 10, which

shows that the ‘effective phase function’ of a blood medium
is given by the single RBC phase function, multiplied with the
concentration-dependent structure factor. An additional draw-
back of inverse Monte Carlo procedures is that all parameters
are optimized independently, whereas, following from causal-
ity, a correlation exists between all optical properties (i.e. the
Kramers−Kronig relations).

It would be beneficial to investigate the possibilities of
other assessment techniques that avoid the methodological
uncertainties (e.g. assumptions on phase function) that are
associated with IS/iMC measurements. With optical coher-
ence tomography (OCT), the non-diffusive component of the
scattered light can be analysed, which facilitates quantification
of the scattering properties, in addition to the absorption
properties. With spectroscopic OCT [47, 48] and the closely
related technique low-coherence spectroscopy (LCS), also the
spectrally resolved optical properties can be quantified. LCS
has been proven to give accurate estimations of μa and μ s

spectra in turbid media with relatively high attenuation
(μ a+μ s up to 35 mm−1) both in vitro [49–51] and in vivo [52]
in the visible wavelength range. Alternatively, methods that
rely on the analysis of diffuse scattering from whole blood
may be combined with other analysis models than the regular
inverse Monte Carlo simulations.

Absorption flattening in whole blood: rescaling μa

For the haemolysed blood spectra that contribute to the com-
piled spectrum of μ a for whole blood, we take into account the
absorption flattening effect. This effect involves the reduction
of the absorption coefficient of a suspension of absorbing
particles (i.e. blood containing RBCs), compared to a homo-
geneous solution containing the same number of absorbing
molecules (i.e. haemolysed blood). The first theoretical as-
sessment of absorption flattening originates from Duysens
[32] for cubical-, spherical- and arbitrary-shaped particles.
We use the cubical description (Eq. 3), since it only slightly
deviates from Duysens’ more comprehensive spherical parti-
cle approximation (which was reintroduced by Finlay and
Foster [33]). The analysis of Duysens assumes random place-
ment of the absorbing particles, with no correlations between
their positions (Poisson distribution; so that the spatial vari-
ance σ2 of the number of particles equals the mean number μ
of particles). Applying Beer’s law to each of the particles (and
unit transmission for the ‘holes’) leads to the result of Eq. 3
upon averaging over all possible particle arrangements. If all
particles were stacked together, σ 2 would be 0 (without
changingμ) and the measured transmissionwould correspond
to that of a homogeneous solution of the absorbing mole-
cules—without absorption flattening. Thus, σ2 ultimately de-
termines the flattening effect. In a whole blood medium,
possible correlations between the particle positions lead to
an increase in σ 2. This causes a further reduction in the
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measured absorption coefficient [53]. Interestingly, the in-
creased σ2 is determined by the volume integral of the radial
distribution function G (r ) [54], describing spatial arrange-
ment that leads to dependent scattering effects (part II). This
clearly emphasizes that the organization of a medium/tissue is
reflected in all measurable optical properties. From a practical
point of view, Duysens’ simple model of ‘cubic absorbers’
excellently scales data from haemoglobin solutions to the
compiled absorption spectrum of blood.

The compartmentalization of haemoglobin in red blood
cells causes the absorption flattening effect of blood absorp-
tion spectra compared to that of pure haemoglobin solutions.
For techniques such as diffuse reflection spectroscopy, the
same effect occurs on a larger scale because blood is not
distributed homogeneously in tissue, but concentrated in ves-
sels. Van Veen et al. [55] propose a correction factor intro-
duced by Svaasand [56] that, interestingly, takes exactly the
same form as Eq. 3 (but now with the vessel diameter as the
length parameter instead of the diameter of the RBC), al-
though it is derived in a completely different manner.

Dependent scattering in whole blood: rescaling μ s

All literature spectra of μ s were rescaled to a haematocrit of
45 % in the compilation of the average spectrum, while taking
into account the effect of dependent scattering. Dependent
scattering occurs when particles (i.e. RBCs) are closely spaced,
or correlations exist between their positions. In that case, the
phase relation between the fields scattered from different parti-
cles cannot be neglected. Therefore, the scattered fields should
be added, rather than the scattered intensities. We choose a
numerical, forward approach to assess the effect of dependent
scattering, in which we calculate the scattering properties of
blood using Mie theory (independent scattering) and Mie the-
ory in combination with the Percus–Yevick radial distribution
functionG(r) (dependent scattering). This choice of theoretical
descriptions essentially models blood as a high-concentration
suspension of non-deformable spheres. This approach does not
do full justice to the structural and rheological complexity of
RBCs and blood. Future work on scattering formalisms, such
as discrete dipole approximations [57] or models for G(r), can
thus be employed using the same methodology.

A main practical result of our work is the scaling factor
γ (hct) that scales the scattering coefficients of independent
scattering to dependent scattering. The most cited form in the
literature is γ (hct)=1−hct (Eq. 14), proposed by Twersky
[40]. However, in the derivation of this approximation, it is
assumed that the scatterers are small and no correlations exist
between their spatial positions—which is likely invalid for
whole blood. Twersky’s scaling factor has been found in better
agreement with experiments compared to linear haematocrit
scaling (e.g. γ (hct)=1), but other theoretical and empirical
forms have been proposed, most importantly Eqs. 15 and 16.

In this work, we propose γ (hct)=(1−hct)2 as a practical
approximation for the exactly calculated values from Mie/
Percus–Yevick theory (Eq. 17). The agreement with the em-
pirical form of Steinke et al. [11] is excellent.

Theoretical estimation of μ s and g

In addition to the compiled spectra from literature, we also
calculated the spectra of μ s and g for whole blood, using only
the absorption spectrum of blood as an input. The main advan-
tage of this ‘forward approach’ to calculate these optical prop-
erties is that complicated measurements on whole blood are
replaced by relatively straightforward absorption measure-
ments on non-scattering haemoglobin solutions. However, both
our calculations and whole blood measurements with IS/iMC
require assumptions in the analysis method (as discussed for IS/
iMC in ‘Compilation of optical property spectra from literature’
section). In our method, a choice for scattering theory and radial
distribution function must be made.

Our calculated spectra of the scattering coefficient μ s are in
reasonable agreement with the compiled spectra from literature
(Fig. 3d). The order of magnitude is the same over the whole
wavelength range that is considered, and all spectral features
occur at the samewavelengths. The largest deviations are found
in the wavelength range where the absorption of blood is strong
compared to its scattering (250–600 nm). The same discrepan-
cies are found in the spectrum of the scattering anisotropy g
(Fig. 4b). Interestingly, these deviations are less prominent in
the compounded parameters μ s′ (reduced scattering coefficient,
Fig. 4c) and μeff (effective scattering coefficient, Fig. 4d).
Differences between the compiled and calculated spectra of
μ s and g may be caused either by false estimations of the phase
function in the iMC analysis of the literature spectra and/or
assumptions in our theoretical estimations.

In general, the input to Mie theory (or any other scattering
formalism) is the complex refractive index m (ω )=n (ω )+
iκ (ω ) of the particle and of the suspending medium. In our
calculations, its real part is obtained via Kramers–Kronig
transformation of the imaginary part, which in turn is obtained
from the absorption coefficient of haemoglobin (Eqs. 4 and 5).
Meinke et al. [10] also calculated the scattering properties of
blood using the Mie theory, using the experimentally deter-
mined values of the real part of the refractive index from
haemoglobin solutions by Friebel et al. [30] (Fig. 2a). These
measurements suggest that it can be expected that the refrac-
tive index of haemoglobin solutions will increase for wave-
lengths <300 nm, similar to the refractive index of plasma/
water. This is not found in our calculations because
haemoglobin absorption spectra (and thus of the imaginary
part of the refractive index) are only available down to
250 nm. If these spectra would be available down to wave-
lengths overlapping with the water absorption in the UV, a
similar increase in the refractive index is expected to be found.
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For this reason, we caution the use of our calculated spectra
below 300 nm. However, the values for the refractive index of
haemoglobin solutions from Friebel et al. [30] are on average
0.02 higher in magnitude than the values found through our
Kramers−Kronig analysis (Fig. 2a), which Friebel et al. ascribed
to sample preparation. Applying the experimentally determined
refractive index of Friebel et al. in our analysis would therefore
result in unrealistically high values for μs (Fig. 2b).

Choosing between the compiled and calculated spectra

Since the primary aim of this review is to provide the reader
with a set of optical property spectra for whole blood that can
be used in the practice of biomedical optics, the question
remains which spectra the reader should choose from the
provided results. For μ a, we present only compiled literature
spectra of oxygenated blood and deoxygenated whole blood
(Fig. 1c). Hence, our logical advice is to use these compiled
spectra. For μ s, g , μ s′ and μ eff however, we present both the
compiled and the calculated Kramers–Kronig/Percus–Yevick
spectra (Figs. 3d and 4b–d, respectively). The compiled spec-
tra, as well as the calculated spectra rely on individual as-
sumptions in their analysis. At present, we cannot assess
which method provides the most reliable results. It is therefore
difficult to draw any solid conclusions on the choice between
the compiled and calculated spectra for μ s, g , μ s′ and μ eff.

In the wavelength below 600 nm, both the calculated and
compiled experimental spectra of all optical properties show
strong spectral fluctuations. This is expected, since the optical
properties are strong functions of the complex refractive in-
dex. The real (n) and imaginary part (κ ) of this quantity are
interdependent on grounds of causality and as expressed by
the Kramers–Kronig relations. The spectrum of κ can be
easily obtained from the well-established absorption spectrum
of haemoglobin solutions using Eq. 4. The spectrum of n is
available through calculations (this work) and has been deter-
mined experimentally [30] as shown in Fig. 2a. Both methods
show fluctuations in n (λ ) around the large absorption peaks
of haemoglobin with a modulation depth of 0.01–0.05 around
their respective baseline values. To the best of our knowledge,
no scattering theory applied to blood (cells) predicts the mag-
nitude of the fluctuations in the compiled literature spectra of
μ s and particularly g using these input values.We hypothesize
that this is largely due to the inverse Monte Carlo procedures
as discussed in the ‘Compilation of optical property spectra
from literature’ section. We therefore argue that our calculated
spectra may provide a more consistent estimation of μ s, g , μ s′
and μ eff for the wavelength range of 300–600 nm.

Conclusion

In this article, we provided a critical review, compilation and
calculation of the optical properties of whole blood (hct=

45 %). An important conclusion from our review study is that
the optical properties of blood are influenced by a large variety
of factors of both physical and methodological origin (‘Factors
influencing the optical properties of blood’ section). One should
always be aware of these factors when relying on literature
spectra of μa, μ s and g or when performing one’s own optical
property measurements on blood.

For two important factors of influence—the effects of
absorption flattening and dependent scattering—we provided
practical formulas for rescaling literature spectra that have
been obtained from haemolysed and diluted blood, respective-
ly. Our theoretically derived formula for the influence of
dependent scattering on μ s is in good agreement with the
previously reported empirical relation by Steinke et al. [11].

The main results of this article are the compiled spectra for
the μ a of oxygenized and deoxygenized whole blood (Fig. 1c)
and both the compiled and calculated spectra for μ s (Fig. 3d),
g (Fig. 4b), μ s′ (Fig. 4c) and μ eff (Fig. 4d) of whole blood.We
argue that our calculated spectra may provide a better estima-
tion of μ s, g , μ s′ and μeff in the wavelength range of 300–
600 nm. The compiled and/or calculated spectra of μ a, μ s and
g have been tabulated in the Appendix of this article. From
that, the spectra for μ s′ and μeff can be easily calculated. With
that, we hope that we have provided the reader with a set of
optical property spectra for whole blood that can be used in the
practice of biomedical optics.
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Appendix: Tabulated data for the optical property spectra
of whole blood, hct=45 %

Explanation of symbols:

μ a Absorption coefficient
SO2 Oxygen saturation
μ s Scattering coefficient
g Scattering anisotropy

From these data, the reduced scattering coefficient (μ s′)
and the effective attenuation coefficient (μ eff) can be calculat-
ed, using either the compiled, or the theoretical spectra (with
SO2>98 % or SO2=0 %) as input:

μs
0 ¼ μ

s
1–gð Þ

μeff ¼ √ 3μa μa þ μs
0ð Þ½ �
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Compiled averages from literature spectra Kramers–Kronig/Percus–Yevick theory

Wavelength μa, SO2>98 % μa, SO2=0 % μs, SO2>98 % g , SO2>98 % μs, SO2>98 % μ s, SO2=0 % g , SO2>98 % g , SO2=0 %

[nm] [mm−1] [mm−1] [mm−1] [−] [mm−1] [mm−1] [−] [−]
251 44.02 48.32 58.64 0.8088 22.47 7.00 0.9980 0.9981

252 42.29 48.89 58.61 0.8126 36.69 16.92 0.9978 0.9980

254 43.58 49.47 58.35 0.8147 41.34 21.01 0.9977 0.9979

256 44.89 50.26 58.00 0.8164 44.97 24.41 0.9976 0.9978

258 46.38 50.95 57.36 0.8187 48.07 27.57 0.9975 0.9978

260 47.89 51.57 56.99 0.8200 50.90 30.60 0.9974 0.9977

262 49.48 52.19 56.60 0.8202 53.52 33.55 0.9973 0.9976

264 51.00 52.81 56.04 0.8202 56.00 36.45 0.9972 0.9976

266 52.22 53.32 55.26 0.8204 58.41 39.31 0.9971 0.9975

268 53.29 53.83 54.94 0.8205 60.81 42.15 0.9970 0.9974

270 54.13 54.34 54.63 0.8210 63.40 45.01 0.9969 0.9973

272 54.59 54.63 54.35 0.8222 66.14 48.01 0.9967 0.9972

274 54.99 54.32 54.42 0.8235 68.80 51.06 0.9966 0.9971

276 54.97 53.92 54.63 0.8251 71.26 53.47 0.9965 0.9970

278 54.63 53.56 54.82 0.8281 73.30 55.28 0.9964 0.9970

280 54.14 53.19 54.99 0.8324 75.64 57.11 0.9963 0.9969

282 53.34 52.77 55.18 0.8374 77.96 59.03 0.9962 0.9968

284 52.30 52.03 55.38 0.8428 80.44 61.16 0.9961 0.9967

286 50.45 50.67 55.56 0.8497 82.95 63.32 0.9960 0.9967

288 48.22 48.72 56.00 0.8578 85.69 65.87 0.9960 0.9966

290 46.13 45.94 56.72 0.8648 87.56 68.80 0.9959 0.9965

292 43.58 43.08 57.56 0.8713 90.11 71.14 0.9958 0.9965

294 40.50 40.29 58.46 0.8798 93.61 73.39 0.9957 0.9964

296 37.82 37.45 59.36 0.8889 96.38 76.05 0.9957 0.9964

298 35.12 34.81 60.11 0.8976 98.85 78.16 0.9956 0.9963

300 32.52 33.15 60.64 0.9035 100.27 79.57 0.9956 0.9963

302 30.99 32.12 61.01 0.9084 100.50 79.87 0.9955 0.9962

304 30.01 31.25 61.36 0.9142 100.33 80.00 0.9955 0.9962

306 29.69 30.47 61.59 0.9159 99.79 79.89 0.9955 0.9962

308 29.75 30.28 61.28 0.9165 99.31 79.22 0.9954 0.9961

310 30.03 30.95 60.80 0.9159 98.78 78.45 0.9954 0.9961

312 30.73 32.10 60.24 0.9146 97.73 77.50 0.9953 0.9961

314 31.49 33.25 59.59 0.9129 96.70 76.71 0.9953 0.9960

316 32.45 34.43 58.90 0.9088 95.68 76.03 0.9952 0.9960

318 33.76 35.61 58.15 0.9029 94.81 75.40 0.9952 0.9959

320 35.15 36.86 57.50 0.8975 93.96 74.72 0.9951 0.9959

322 36.61 38.22 56.85 0.8938 93.08 74.02 0.9950 0.9958

324 38.03 39.50 56.31 0.8901 92.22 73.43 0.9950 0.9957

326 39.49 40.67 55.96 0.8861 91.40 72.96 0.9949 0.9957

328 40.94 41.70 55.59 0.8830 90.62 72.64 0.9948 0.9956

330 42.29 42.61 55.22 0.8797 89.98 72.41 0.9947 0.9955

332 43.46 43.51 54.73 0.8773 89.49 72.12 0.9947 0.9955

334 44.48 44.45 54.40 0.8758 89.26 71.74 0.9946 0.9954

336 45.42 45.94 54.19 0.8743 89.25 71.05 0.9945 0.9954

338 46.02 47.50 53.98 0.8735 89.20 70.45 0.9944 0.9953

340 46.46 48.90 53.80 0.8727 89.17 70.12 0.9943 0.9952

342 46.86 49.89 53.71 0.8720 89.22 70.02 0.9942 0.9951

344 47.23 50.81 53.63 0.8719 89.37 69.86 0.9942 0.9951

Lasers Med Sci (2014) 29:453–479 467



346 47.14 51.73 53.59 0.8724 89.94 69.68 0.9941 0.9950

348 46.73 52.68 53.54 0.8734 90.44 69.44 0.9940 0.9949

350 46.29 53.76 53.59 0.8750 90.96 69.11 0.9939 0.9949

352 45.80 54.73 53.84 0.8770 91.25 68.58 0.9939 0.9948

354 45.24 55.68 54.09 0.8793 91.48 68.10 0.9938 0.9947

356 44.37 56.62 54.37 0.8816 91.90 67.72 0.9938 0.9947

358 43.36 57.20 54.70 0.8841 92.56 67.64 0.9937 0.9946

360 42.38 57.74 54.59 0.8863 92.92 67.52 0.9937 0.9945

362 41.67 58.10 54.34 0.8881 93.05 67.39 0.9937 0.9945

364 41.22 58.43 54.08 0.8897 93.03 67.25 0.9937 0.9944

366 40.86 58.76 53.68 0.8913 92.66 67.07 0.9936 0.9944

368 40.72 59.10 53.23 0.8920 92.06 66.84 0.9936 0.9943

370 41.14 59.44 52.88 0.8922 90.92 66.57 0.9936 0.9943

372 42.09 59.74 52.49 0.8915 89.19 66.26 0.9936 0.9942

374 43.14 60.04 52.00 0.8902 87.52 65.93 0.9936 0.9941

376 44.26 60.34 51.33 0.8879 85.78 65.56 0.9936 0.9941

378 45.87 60.67 50.59 0.8851 83.85 65.15 0.9936 0.9941

380 47.86 61.28 49.79 0.8798 81.57 64.71 0.9935 0.9940

382 50.38 61.73 48.64 0.8741 79.10 64.17 0.9935 0.9940

384 54.31 62.83 47.42 0.8675 76.48 62.97 0.9935 0.9940

386 57.72 64.26 46.07 0.8603 73.63 61.59 0.9935 0.9939

388 62.58 65.75 44.93 0.8474 70.24 60.16 0.9934 0.9939

390 68.33 67.75 43.94 0.8379 66.26 58.39 0.9934 0.9938

392 73.62 71.01 43.03 0.8257 62.72 56.43 0.9932 0.9937

394 79.07 74.09 42.33 0.8127 59.85 54.90 0.9931 0.9937

396 84.00 76.95 41.77 0.7967 57.77 53.61 0.9929 0.9936

398 88.56 79.78 41.17 0.7863 56.09 52.39 0.9928 0.9935

400 93.07 82.54 40.12 0.7734 54.32 51.16 0.9926 0.9934

402 97.40 85.59 41.27 0.7866 52.31 49.55 0.9925 0.9933

404 101.82 89.21 40.25 0.7769 49.52 47.83 0.9924 0.9932

406 106.16 92.73 39.49 0.7726 45.77 46.47 0.9922 0.9930

408 110.73 96.09 38.90 0.7657 42.83 45.36 0.9916 0.9929

410 113.81 99.87 38.60 0.7604 42.44 44.39 0.9910 0.9927

412 116.09 104.21 38.95 0.7575 42.74 43.43 0.9904 0.9926

414 117.97 108.92 39.87 0.7585 43.62 42.46 0.9896 0.9924

416 118.04 114.03 41.09 0.7606 45.59 41.74 0.9890 0.9922

418 117.22 119.62 42.38 0.7657 47.68 41.18 0.9883 0.9919

420 115.39 125.10 43.91 0.7742 51.35 40.78 0.9876 0.9916

422 111.45 131.52 46.42 0.7896 56.08 40.43 0.9872 0.9914

424 106.30 139.37 49.90 0.8020 61.93 40.06 0.9870 0.9910

426 100.61 145.30 52.74 0.8141 68.03 40.40 0.9869 0.9906

428 94.94 151.01 55.61 0.8290 74.00 40.72 0.9870 0.9901

430 89.18 155.62 57.55 0.8390 79.94 40.89 0.9870 0.9896

432 82.69 159.31 60.51 0.8568 85.95 41.69 0.9871 0.9889

434 74.61 158.30 62.65 0.8710 95.79 43.48 0.9873 0.9882

436 66.95 156.93 64.74 0.8820 102.94 45.58 0.9877 0.9873

438 58.47 133.73 66.40 0.8928 105.63 50.05 0.9880 0.9865

440 51.07 118.33 68.83 0.9026 109.27 57.64 0.9882 0.9862

442 46.60 107.88 70.39 0.9220 111.29 63.54 0.9883 0.9860

444 42.24 88.84 72.82 0.9302 113.65 73.81 0.9885 0.9861

446 38.21 74.30 73.79 0.9343 114.47 81.66 0.9886 0.9862

448 34.26 54.74 75.05 0.9392 116.38 94.61 0.9887 0.9863
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450 31.48 33.81 77.20 0.9447 116.55 118.29 0.9888 0.9869

452 29.42 25.94 78.01 0.9488 117.24 125.06 0.9888 0.9878

454 27.66 19.82 78.82 0.9520 118.02 128.16 0.9889 0.9884

456 26.00 17.04 79.42 0.9544 118.52 127.52 0.9889 0.9888

458 24.47 13.61 80.17 0.9567 118.65 126.75 0.9890 0.9890

460 22.82 11.45 80.31 0.9587 118.94 125.60 0.9890 0.9892

462 21.33 10.37 80.37 0.9611 119.16 124.50 0.9890 0.9894

464 20.10 9.64 80.85 0.9634 119.13 123.31 0.9890 0.9895

466 18.97 9.12 81.74 0.9651 119.26 122.08 0.9890 0.9896

468 17.93 8.65 82.77 0.9665 119.26 120.90 0.9890 0.9897

470 17.05 8.29 82.61 0.9677 119.15 119.73 0.9891 0.9897

472 16.30 7.99 83.21 0.9684 119.01 118.60 0.9891 0.9898

474 15.71 7.79 83.50 0.9690 118.85 117.42 0.9891 0.9898

476 15.16 7.60 83.81 0.9695 118.63 116.30 0.9891 0.9898

478 14.63 7.44 84.99 0.9700 118.38 115.20 0.9890 0.9898

480 14.15 7.31 86.13 0.9705 118.12 114.14 0.9890 0.9898

482 13.67 7.43 86.48 0.9714 117.80 113.05 0.9890 0.9899

484 13.30 7.56 86.75 0.9723 117.42 112.00 0.9890 0.9899

486 12.92 7.69 86.80 0.9731 117.03 110.99 0.9890 0.9899

488 12.54 7.86 86.81 0.9738 116.65 110.00 0.9890 0.9899

490 12.23 8.10 87.02 0.9743 116.26 108.96 0.9890 0.9898

492 11.94 8.35 87.52 0.9748 115.89 107.96 0.9889 0.9898

494 11.65 8.60 88.31 0.9752 115.52 106.99 0.9889 0.9898

496 11.37 8.87 88.75 0.9756 115.13 106.04 0.9889 0.9898

498 11.19 9.17 88.87 0.9759 114.73 105.10 0.9888 0.9898

500 11.05 9.50 88.63 0.9761 114.28 104.16 0.9888 0.9898

502 10.90 9.88 88.23 0.9762 113.83 103.25 0.9888 0.9897

504 10.74 10.25 87.75 0.9762 113.35 102.36 0.9888 0.9897

506 10.59 10.64 86.35 0.9762 112.88 101.49 0.9888 0.9897

508 10.52 10.99 85.75 0.9762 112.32 100.65 0.9887 0.9896

510 10.55 11.41 85.43 0.9763 111.71 99.82 0.9887 0.9896

512 10.74 11.91 85.03 0.9764 111.05 99.01 0.9887 0.9896

514 11.09 12.42 84.54 0.9765 110.29 98.21 0.9886 0.9895

516 11.59 12.92 83.74 0.9765 109.41 97.44 0.9886 0.9895

518 12.34 13.43 82.61 0.9763 108.32 96.68 0.9886 0.9894

520 13.26 13.98 81.42 0.9760 107.15 95.93 0.9886 0.9894

522 14.36 14.50 79.88 0.9756 105.81 95.16 0.9886 0.9894

524 15.62 15.22 78.06 0.9751 104.37 94.37 0.9885 0.9893

526 17.17 16.04 76.69 0.9744 102.87 93.59 0.9885 0.9893

528 19.20 16.96 75.28 0.9728 101.37 92.83 0.9884 0.9892

530 20.91 17.82 73.83 0.9707 99.91 92.08 0.9883 0.9892

532 22.48 18.66 72.78 0.9687 98.65 91.34 0.9883 0.9891

534 23.91 19.51 71.83 0.9668 97.67 90.60 0.9882 0.9891

536 25.17 20.37 71.10 0.9650 96.93 89.88 0.9881 0.9890

538 26.22 21.25 70.59 0.9637 96.44 89.18 0.9880 0.9890

540 27.13 22.13 70.14 0.9627 96.27 88.50 0.9879 0.9889

542 27.31 23.19 69.93 0.9625 96.43 87.87 0.9878 0.9888

544 26.79 24.01 69.89 0.9625 96.98 87.30 0.9877 0.9887

546 26.06 24.77 70.34 0.9627 97.79 86.81 0.9876 0.9887

548 25.15 25.45 70.86 0.9633 98.80 86.45 0.9875 0.9886

550 23.86 25.99 71.49 0.9642 99.80 86.20 0.9874 0.9885

552 22.54 26.38 72.27 0.9652 100.46 85.89 0.9874 0.9884
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554 21.34 26.70 73.12 0.9664 100.86 85.66 0.9874 0.9884

556 20.29 26.80 73.70 0.9677 100.98 85.56 0.9874 0.9883

558 19.55 26.71 74.10 0.9690 100.71 85.54 0.9874 0.9883

560 19.12 26.56 74.13 0.9694 100.25 85.59 0.9873 0.9882

562 19.47 26.00 73.63 0.9696 99.50 85.77 0.9873 0.9881

564 20.14 25.38 72.90 0.9693 98.42 85.97 0.9873 0.9880

566 21.04 24.74 72.04 0.9687 97.07 86.17 0.9873 0.9880

568 22.56 24.06 70.98 0.9681 95.53 86.39 0.9872 0.9879

570 24.38 23.29 70.02 0.9677 93.95 86.59 0.9872 0.9879

572 25.62 22.38 69.20 0.9674 92.53 86.76 0.9871 0.9878

574 26.70 21.43 68.82 0.9670 91.56 86.91 0.9870 0.9878

576 27.20 20.49 68.84 0.9666 91.44 87.14 0.9869 0.9878

578 26.87 19.64 69.09 0.9663 92.37 87.45 0.9867 0.9877

580 25.75 18.87 70.07 0.9662 94.28 87.72 0.9865 0.9876

582 23.29 18.08 72.11 0.9669 96.77 87.97 0.9864 0.9876

584 20.06 17.27 74.68 0.9680 99.53 88.24 0.9863 0.9875

586 16.51 16.33 77.42 0.9692 101.95 88.55 0.9862 0.9874

588 12.68 15.30 79.88 0.9708 103.81 88.96 0.9862 0.9874

590 9.72 14.21 81.67 0.9724 105.02 89.50 0.9862 0.9873

592 7.32 13.12 83.13 0.9743 105.69 90.03 0.9862 0.9872

594 5.66 11.92 84.67 0.9759 105.95 90.54 0.9862 0.9872

596 4.48 10.60 85.58 0.9774 105.94 90.98 0.9862 0.9871

598 3.60 9.29 86.21 0.9784 105.74 91.35 0.9862 0.9871

600 2.62 7.53 86.88 0.9794 105.49 91.56 0.9861 0.9871

605 1.51 5.55 87.89 0.9809 104.02 90.96 0.9861 0.9870

610 0.88 4.07 88.09 0.9815 102.49 90.12 0.9860 0.9869

615 0.63 3.27 88.09 0.9820 101.04 89.04 0.9860 0.9869

620 0.46 2.82 88.28 0.9823 99.64 87.85 0.9859 0.9868

625 0.35 2.48 88.50 0.9824 98.30 86.66 0.9859 0.9867

630 0.28 2.27 88.55 0.9826 97.50 86.01 0.9857 0.9866

635 0.24 2.10 88.63 0.9827 96.75 85.38 0.9856 0.9864

640 0.20 1.98 88.84 0.9827 96.01 84.75 0.9854 0.9863

645 0.17 1.89 88.55 0.9826 95.30 84.15 0.9853 0.9862

650 0.16 1.80 88.01 0.9825 94.61 83.56 0.9852 0.9861

655 0.16 1.71 87.72 0.9825 93.44 82.50 0.9851 0.9859

660 0.15 1.64 87.61 0.9826 92.29 81.45 0.9850 0.9858

665 0.14 1.58 87.51 0.9828 91.16 80.44 0.9849 0.9857

670 0.14 1.51 87.25 0.9832 90.06 79.45 0.9848 0.9856

675 0.14 1.43 86.82 0.9830 88.98 78.47 0.9847 0.9855

680 0.14 1.35 86.61 0.9831 87.91 77.51 0.9846 0.9854

685 0.14 1.26 86.57 0.9834 86.87 76.57 0.9845 0.9853

690 0.13 1.17 86.35 0.9835 85.84 75.63 0.9843 0.9852

695 0.13 1.10 86.18 0.9835 84.83 74.71 0.9842 0.9850

700 0.14 1.00 85.70 0.9836 83.86 73.82 0.9841 0.9849

705 0.14 0.93 83.70 0.9837 83.35 73.40 0.9840 0.9848

710 0.17 0.87 83.33 0.9841 82.87 73.00 0.9838 0.9847

715 0.17 0.80 82.99 0.9840 82.40 72.61 0.9837 0.9845

720 0.18 0.75 82.57 0.9839 81.94 72.22 0.9835 0.9843

725 0.19 0.72 82.18 0.9839 81.46 71.82 0.9833 0.9841

730 0.20 0.70 81.64 0.9839 80.57 70.99 0.9831 0.9840

735 0.21 0.70 81.09 0.9839 79.67 70.13 0.9831 0.9839

740 0.22 0.72 80.66 0.9839 78.78 69.29 0.9830 0.9838
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745 0.23 0.76 80.40 0.9838 77.90 68.45 0.9829 0.9837

750 0.24 0.81 80.22 0.9837 77.04 67.62 0.9827 0.9836

755 0.26 0.85 79.85 0.9836 76.19 66.84 0.9826 0.9834

760 0.27 0.84 79.41 0.9835 75.36 66.10 0.9824 0.9832

765 0.29 0.80 78.93 0.9835 74.54 65.39 0.9823 0.9831

770 0.30 0.73 78.42 0.9833 73.73 64.69 0.9822 0.9830

775 0.31 0.66 78.00 0.9832 72.95 64.01 0.9821 0.9829

780 0.33 0.59 77.61 0.9832 72.59 63.73 0.9819 0.9827

785 0.34 0.54 77.19 0.9832 72.25 63.47 0.9818 0.9826

790 0.36 0.51 76.82 0.9832 71.92 63.20 0.9816 0.9824

795 0.37 0.48 76.77 0.9831 71.59 62.94 0.9814 0.9822

800 0.38 0.47 76.73 0.9833 71.27 62.68 0.9812 0.9820

805 0.39 0.46 76.47 0.9832 70.53 62.00 0.9810 0.9818

810 0.40 0.45 76.10 0.9833 69.80 61.33 0.9809 0.9817

815 0.42 0.44 75.70 0.9833 69.08 60.66 0.9808 0.9816

820 0.43 0.44 75.48 0.9834 68.36 60.00 0.9807 0.9815

825 0.45 0.43 75.27 0.9835 67.66 59.35 0.9806 0.9814

830 0.46 0.43 75.06 0.9835 66.96 58.72 0.9804 0.9812

835 0.47 0.43 74.83 0.9834 66.28 58.09 0.9803 0.9811

840 0.48 0.43 74.65 0.9834 65.61 57.48 0.9801 0.9809

845 0.48 0.43 74.51 0.9833 64.95 56.87 0.9799 0.9807

850 0.49 0.42 74.20 0.9832 64.33 56.30 0.9798 0.9806

855 0.51 0.43 73.58 0.9831 64.06 56.08 0.9796 0.9804

860 0.51 0.43 72.87 0.9831 63.82 55.88 0.9794 0.9803

865 0.52 0.43 72.43 0.9831 63.58 55.69 0.9793 0.9801

870 0.53 0.43 72.29 0.9830 63.35 55.50 0.9791 0.9799

875 0.55 0.43 72.12 0.9829 63.09 55.29 0.9789 0.9797

880 0.56 0.44 71.63 0.9828 62.50 54.76 0.9788 0.9796

885 0.56 0.45 70.79 0.9828 61.90 54.20 0.9786 0.9794

890 0.56 0.45 70.07 0.9826 61.30 53.66 0.9784 0.9792

895 0.56 0.46 69.41 0.9824 60.72 53.12 0.9782 0.9791

900 0.56 0.46 68.86 0.9824 60.14 52.59 0.9781 0.9789

905 0.57 0.47 68.35 0.9823 59.57 52.07 0.9780 0.9788

910 0.57 0.47 68.07 0.9820 59.00 51.56 0.9778 0.9787

915 0.57 0.47 67.82 0.9820 58.44 51.05 0.9777 0.9786

920 0.57 0.47 67.54 0.9819 57.89 50.55 0.9776 0.9784

925 0.65 0.46 67.24 0.9818 57.38 50.09 0.9774 0.9783

930 0.65 0.45 66.86 0.9815 57.18 49.93 0.9772 0.9780

935 0.65 0.44 66.42 0.9812 57.01 49.81 0.9770 0.9778

940 0.65 0.43 66.08 0.9811 56.84 49.66 0.9768 0.9776

945 0.65 0.41 65.67 0.9810 56.67 49.55 0.9766 0.9774

950 0.65 0.39 65.21 0.9808 56.47 49.40 0.9763 0.9772

955 0.65 0.38 64.78 0.9805 55.99 48.97 0.9762 0.9770

960 0.66 0.36 64.38 0.9801 55.48 48.51 0.9760 0.9769

965 0.68 0.34 63.95 0.9800 54.97 48.06 0.9759 0.9767

970 0.69 0.32 63.58 0.9799 54.48 47.62 0.9758 0.9766

975 0.69 0.31 63.20 0.9798 53.99 47.18 0.9756 0.9765

980 0.68 0.29 62.68 0.9798 53.51 46.74 0.9755 0.9763

985 0.67 0.26 62.27 0.9798 53.04 46.31 0.9754 0.9762

990 0.66 0.25 62.09 0.9798 52.58 45.89 0.9752 0.9760

995 0.65 0.23 62.00 0.9800 52.11 45.47 0.9750 0.9758

1,000 0.64 0.22 61.83 0.9801 51.66 45.04 0.9748 0.9756
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1,005 0.66 0.31 61.69 0.9801 51.32 44.74 0.9746 0.9754

1,010 0.65 0.28 61.62 0.9801 51.01 44.46 0.9744 0.9752

1,015 0.63 0.28 61.57 0.9800 50.69 44.18 0.9742 0.9750

1,020 0.61 0.28 61.46 0.9800 50.38 43.90 0.9740 0.9748

1,025 0.60 0.27 61.18 0.9800 50.07 43.62 0.9738 0.9747

1,030 0.58 0.24 60.85 0.9800 49.76 43.35 0.9737 0.9745

1,035 0.56 0.24 60.49 0.9800 49.46 43.08 0.9736 0.9744

1,040 0.53 0.23 60.35 0.9800 49.16 42.81 0.9734 0.9743

1,045 0.50 0.22 60.31 0.9800 48.86 42.55 0.9733 0.9741

1,050 0.49 0.22 60.15 0.9800 48.56 42.28 0.9731 0.9739

1,055 0.48 0.22 59.87 0.9800 48.27 42.02 0.9729 0.9737

1,060 0.46 0.21 59.53 0.9799 47.97 41.77 0.9727 0.9735

1,065 0.45 0.20 59.26 0.9799 47.69 41.52 0.9724 0.9732

1,070 0.42 0.19 59.04 0.9799 47.41 41.27 0.9722 0.9730

1,075 0.40 0.19 58.73 0.9800 47.13 41.02 0.9720 0.9728

1,080 0.37 0.18 58.34 0.9802 46.85 40.78 0.9718 0.9726

1,085 0.35 0.17 58.08 0.9801 46.58 40.54 0.9716 0.9724

1,090 0.34 0.17 57.98 0.9802 46.30 40.30 0.9714 0.9722

1,095 0.34 0.16 57.89 0.9804 46.02 40.06 0.9712 0.9721

1,100 0.35 0.15 57.81 0.9797 45.74 39.82 0.9711 0.9719

1,105 0.33 0.15 57.58 0.9834 45.48 39.59 0.9709 0.9718

1,110 0.33 0.16 57.66 0.9832 45.21 39.36 0.9708 0.9716

1,115 0.33 0.15 57.67 0.9832 44.95 39.13 0.9706 0.9715

1,120 0.31 0.14 57.72 0.9832 44.69 38.90 0.9704 0.9713

1,125 0.32 0.14 57.53 0.9829 44.43 38.68 0.9703 0.9711

1,130 0.31 0.13 57.26 0.9828 44.18 38.45 0.9700 0.9709

1,135 0.30 0.15 57.78 0.9832 43.92 38.23 0.9698 0.9706

1,140 0.30 0.16 57.93 0.9835 43.67 38.01 0.9696 0.9704

1,145 0.29 0.18 57.72 0.9834 43.43 37.79 0.9694 0.9702

1,150 0.30 0.19 57.51 0.9832 43.18 37.58 0.9691 0.9699

1,155 0.31 0.21 57.33 0.9830 42.94 37.37 0.9689 0.9697

1,160 0.32 0.21 57.05 0.9829 42.69 37.16 0.9687 0.9695

1,165 0.32 0.21 56.82 0.9828 42.46 36.96 0.9685 0.9693

1,170 0.32 0.21 56.55 0.9827 42.22 36.76 0.9683 0.9691

1,175 0.32 0.21 56.21 0.9827 41.99 36.56 0.9681 0.9689

1,180 0.33 0.21 55.55 0.9827 41.76 36.36 0.9679 0.9688

1,185 0.33 0.21 55.41 0.9827 41.54 36.17 0.9677 0.9686

1,190 0.34 0.21 55.48 0.9827 41.31 35.97 0.9676 0.9684

1,195 0.35 0.20 55.37 0.9827 41.09 35.78 0.9674 0.9683

1,200 0.36 0.20 55.20 0.9826 40.88 35.59 0.9672 0.9681

1,205 0.37 0.20 55.16 0.9826 40.70 35.40 0.9671 0.9679

1,210 0.20 0.20 50.16 0.9784 40.48 35.22 0.9669 0.9677

1,215 0.20 0.20 49.98 0.9784 40.25 35.03 0.9667 0.9675

1,220 0.20 0.19 49.81 0.9784 40.04 34.85 0.9665 0.9673

1,225 0.19 0.19 49.43 0.9784 39.82 34.67 0.9663 0.9671

1,230 0.18 0.17 49.21 0.9784 39.61 34.49 0.9660 0.9668

1,235 0.18 0.17 49.25 0.9784 39.40 34.31 0.9658 0.9666

1,240 0.18 0.17 49.19 0.9783 39.19 34.13 0.9655 0.9664

1,245 0.18 0.17 47.97 0.9782 38.99 33.96 0.9653 0.9661

1,250 0.17 0.17 47.51 0.9781 38.79 33.78 0.9651 0.9659

1,255 0.17 0.17 48.18 0.9781 38.58 33.61 0.9648 0.9656

1,260 0.17 0.17 48.64 0.9783 38.38 33.44 0.9646 0.9654
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1,265 0.17 0.15 47.36 0.9781 38.19 33.27 0.9643 0.9652

1,270 0.15 0.14 46.50 0.9775 37.99 33.10 0.9641 0.9650

1,275 0.16 0.15 47.09 0.9774 37.79 32.93 0.9639 0.9648

1,280 0.18 0.16 47.91 0.9778 37.59 32.76 0.9638 0.9646

1,285 0.17 0.16 47.13 0.9778 37.40 32.59 0.9636 0.9645

1,290 0.16 0.16 46.21 0.9778 37.21 32.43 0.9634 0.9643

1,295 0.18 0.18 45.77 0.9778 37.01 32.26 0.9633 0.9641

1,300 0.19 0.20 45.36 0.9779 36.82 32.09 0.9631 0.9640

1,305 0.20 0.21 44.79 0.9780 36.63 31.93 0.9629 0.9638

1,310 0.21 0.22 44.21 0.9776 36.44 31.76 0.9628 0.9636

1,315 0.22 0.23 43.95 0.9772 36.25 31.60 0.9626 0.9634

1,320 0.24 0.26 43.91 0.9769 36.06 31.43 0.9624 0.9632

1,325 0.26 0.29 43.64 0.9766 35.87 31.27 0.9622 0.9630

1,330 0.29 0.31 43.38 0.9768 35.68 31.11 0.9619 0.9627

1,335 0.32 0.34 43.85 0.9771 35.49 30.95 0.9617 0.9625

1,340 0.35 0.37 44.37 0.9775 35.31 30.80 0.9614 0.9622

1,345 0.37 0.37 44.02 0.9775 35.13 30.65 0.9611 0.9619

1,350 0.39 0.38 43.68 0.9771 34.95 30.49 0.9609 0.9617

1,355 0.42 0.41 43.00 0.9764 34.76 30.33 0.9606 0.9614

1,360 0.45 0.43 42.32 0.9754 34.58 30.17 0.9603 0.9611

1,365 0.50 0.51 41.09 0.9744 34.38 29.99 0.9601 0.9609

1,370 0.59 0.65 40.31 0.9736 34.18 29.81 0.9598 0.9607

1,375 0.72 0.78 40.80 0.9738 33.97 29.64 0.9596 0.9604

1,380 0.88 0.92 41.69 0.9741 33.77 29.48 0.9594 0.9602

1,385 1.07 1.05 41.21 0.9743 33.57 29.32 0.9592 0.9600

1,390 1.30 1.20 40.43 0.9741 33.37 29.16 0.9590 0.9599

1,395 1.46 1.35 39.59 0.9733 33.20 29.01 0.9588 0.9597

1,400 1.62 1.49 39.21 0.9725 33.04 28.86 0.9586 0.9595

1,405 1.78 1.71 39.09 0.9715 32.90 28.74 0.9585 0.9594

1,410 1.94 1.83 38.98 0.9707 32.78 28.63 0.9583 0.9592

1,415 2.04 1.94 39.09 0.9699 32.67 28.53 0.9581 0.9590

1,420 2.13 2.08 39.08 0.9695 32.56 28.43 0.9579 0.9588

1,425 2.24 2.27 38.20 0.9694 32.45 28.33 0.9577 0.9586

1,430 2.33 2.36 38.15 0.9697 32.35 28.26 0.9575 0.9584

1,435 2.38 2.43 38.11 0.9692 32.26 28.19 0.9573 0.9582

1,440 2.38 2.50 38.01 0.9686 32.18 28.12 0.9571 0.9579

1,445 2.40 2.51 37.53 0.9683 32.10 28.07 0.9568 0.9576

1,450 2.41 2.48 37.05 0.9685 32.02 28.01 0.9565 0.9574

1,455 2.40 2.44 37.24 0.9686 31.94 27.96 0.9563 0.9571

1,460 2.38 2.37 37.36 0.9685 31.86 27.91 0.9560 0.9568

1,465 2.40 2.35 37.11 0.9682 31.78 27.84 0.9557 0.9565

1,470 2.34 2.33 36.85 0.9684 31.72 27.78 0.9554 0.9562

1,475 2.27 2.29 36.77 0.9689 31.65 27.72 0.9551 0.9559

1,480 2.20 2.24 36.72 0.9693 31.59 27.67 0.9548 0.9556

1,485 2.06 2.17 36.32 0.9684 31.54 27.61 0.9545 0.9553

1,490 1.89 2.07 35.91 0.9681 31.48 27.57 0.9542 0.9550

1,495 1.78 1.95 35.70 0.9682 31.39 27.52 0.9539 0.9548

1,500 1.71 1.82 35.56 0.9683 31.31 27.46 0.9537 0.9545

1,505 1.63 1.73 35.19 0.9685 31.23 27.39 0.9534 0.9543

1,510 1.50 1.63 35.07 0.9687 31.15 27.32 0.9531 0.9540

1,515 1.39 1.54 34.99 0.9690 31.06 27.25 0.9529 0.9538

1,520 1.34 1.49 34.98 0.9693 30.97 27.18 0.9527 0.9536
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1,525 1.27 1.42 34.88 0.9688 30.87 27.11 0.9525 0.9534

1,530 1.21 1.33 34.72 0.9683 30.78 27.04 0.9523 0.9532

1,535 1.15 1.23 34.54 0.9686 30.68 26.97 0.9521 0.9530

1,540 1.11 1.14 34.33 0.9688 30.59 26.90 0.9519 0.9528

1,545 1.07 1.09 34.11 0.9685 30.49 26.81 0.9517 0.9526

1,550 1.03 1.05 33.98 0.9683 30.40 26.73 0.9514 0.9524

1,555 0.97 1.01 33.90 0.9686 30.31 26.65 0.9513 0.9522

1,560 0.91 0.97 33.82 0.9683 30.22 26.57 0.9510 0.9520

1,565 0.85 0.92 33.73 0.9685 30.12 26.49 0.9508 0.9518

1,570 0.82 0.87 33.63 0.9694 30.02 26.42 0.9506 0.9515

1,575 0.79 0.82 33.53 0.9691 29.92 26.34 0.9504 0.9513

1,580 0.75 0.78 33.37 0.9688 29.82 26.25 0.9502 0.9511

1,585 0.73 0.75 32.93 0.9684 29.73 26.17 0.9499 0.9508

1,590 0.72 0.71 32.60 0.9683 29.63 26.09 0.9497 0.9506

1,595 0.70 0.69 32.55 0.9682 29.53 26.01 0.9495 0.9503

1,600 0.69 0.67 32.48 0.9681 29.43 25.93 0.9492 0.9501

1,605 0.67 0.65 32.44 0.9681 29.36 25.87 0.9489 0.9498

1,610 0.66 0.64 32.40 0.9682 29.28 25.81 0.9486 0.9495

1,615 0.64 0.62 32.32 0.9683 29.21 25.74 0.9483 0.9492

1,620 0.64 0.62 32.21 0.9684 29.14 25.68 0.9480 0.9489

1,625 0.63 0.61 31.76 0.9684 29.06 25.62 0.9477 0.9486

1,630 0.63 0.61 31.50 0.9685 28.99 25.56 0.9474 0.9483

1,635 0.62 0.61 31.38 0.9685 28.92 25.50 0.9471 0.9480

1,640 0.62 0.61 31.21 0.9685 28.85 25.45 0.9468 0.9477

1,645 0.62 0.60 31.08 0.9684 28.78 25.39 0.9465 0.9473

1,650 0.60 0.59 31.02 0.9682 28.71 25.33 0.9462 0.9470

1,655 0.58 0.57 31.10 0.9681 28.64 25.28 0.9459 0.9467

1,660 0.57 0.56 31.17 0.9679 28.57 25.22 0.9456 0.9465

1,665 0.57 0.56 30.97 0.9671 28.50 25.16 0.9453 0.9462

1,670 0.57 0.56 30.75 0.9663 28.42 25.10 0.9450 0.9459

1,675 0.57 0.56 30.48 0.9663 28.35 25.04 0.9447 0.9456

1,680 0.57 0.56 30.23 0.9663 28.28 24.98 0.9444 0.9454

1,685 0.57 0.57 30.02 0.9662 28.21 24.93 0.9442 0.9451

1,690 0.58 0.58 29.81 0.9660 28.14 24.87 0.9439 0.9449

1,695 0.59 0.58 29.66 0.9660 28.07 24.81 0.9437 0.9446

1,700 0.60 0.59 29.65 0.9660 28.00 24.75 0.9434 0.9444

1,705 0.60 0.59 29.75 0.9660 27.93 24.69 0.9432 0.9442

1,710 0.61 0.60 29.75 0.9660 27.86 24.64 0.9430 0.9440

1,715 0.61 0.61 29.40 0.9660 27.79 24.58 0.9428 0.9437

1,720 0.62 0.61 29.08 0.9659 27.72 24.52 0.9425 0.9435

1,725 0.62 0.62 28.89 0.9658 27.65 24.46 0.9423 0.9433

1,730 0.64 0.63 28.71 0.9657 27.58 24.41 0.9421 0.9431

1,735 0.65 0.64 28.55 0.9655 27.50 24.35 0.9419 0.9429

1,740 0.67 0.65 28.49 0.9653 27.43 24.29 0.9417 0.9427

1,745 0.69 0.66 28.56 0.9651 27.36 24.23 0.9415 0.9425

1,750 0.71 0.68 28.62 0.9650 27.29 24.17 0.9413 0.9423

1,755 0.74 0.72 28.43 0.9652 27.22 24.10 0.9411 0.9420

1,760 0.76 0.75 28.23 0.9649 27.15 24.04 0.9408 0.9418

1,765 0.78 0.79 28.00 0.9640 27.08 23.99 0.9406 0.9416

1,770 0.81 0.81 27.76 0.9633 27.01 23.93 0.9404 0.9413

1,775 0.83 0.82 27.59 0.9634 26.94 23.88 0.9401 0.9410

1,780 0.84 0.83 27.49 0.9635 26.87 23.82 0.9398 0.9407
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1,785 0.86 0.84 27.55 0.9646 26.80 23.77 0.9395 0.9404

1,790 0.88 0.84 27.60 0.9663 26.74 23.71 0.9392 0.9401

1,795 0.88 0.84 27.37 0.9651 26.67 23.66 0.9389 0.9398

1,800 0.87 0.84 27.14 0.9639 26.61 23.60 0.9386 0.9395

1,805 0.86 0.83 26.89 0.9628 26.56 23.56 0.9383 0.9392

1,810 0.84 0.84 26.65 0.9629 26.51 23.51 0.9379 0.9388

1,815 0.83 0.84 26.55 0.9630 26.46 23.46 0.9376 0.9385

1,820 0.81 0.84 26.57 0.9639 26.40 23.41 0.9372 0.9381

1,825 0.79 0.85 26.65 0.9647 26.34 23.36 0.9369 0.9378

1,830 0.78 0.88 26.56 0.9643 26.27 23.29 0.9365 0.9374

1,835 0.78 0.90 26.33 0.9640 26.19 23.23 0.9362 0.9370

1,840 0.80 0.94 26.11 0.9630 26.11 23.15 0.9358 0.9367

1,845 0.80 0.97 25.97 0.9610 26.01 23.07 0.9355 0.9364

1,850 0.87 1.02 25.75 0.9622 25.89 22.97 0.9351 0.9360

1,855 1.10 1.21 25.52 0.9619 25.75 22.84 0.9348 0.9357

1,860 1.40 1.81 25.23 0.9610 25.59 22.68 0.9345 0.9355

1,865 1.78 2.19 24.79 0.9591 25.43 22.53 0.9342 0.9352

1,870 2.16 2.65 24.35 0.9597 25.26 22.41 0.9339 0.9349

1,875 3.03 3.24 23.96 0.9615 25.05 22.27 0.9337 0.9346

1,880 3.90 3.99 23.57 0.9597 24.89 22.13 0.9334 0.9344

1,885 4.60 5.05 23.77 0.9540 24.77 22.01 0.9332 0.9341

1,890 5.30 5.89 24.16 0.9479 24.68 21.96 0.9329 0.9339

1,895 6.16 6.56 24.03 0.9421 24.61 21.98 0.9326 0.9336

1,900 7.10 7.00 23.90 0.9361 24.58 22.02 0.9324 0.9333

1,905 7.40 7.33 23.96 0.9326 24.63 22.08 0.9321 0.9330

1,910 7.69 7.41 24.27 0.9244 24.69 22.18 0.9318 0.9327

1,915 8.01 7.41 24.48 0.9156 24.77 22.26 0.9315 0.9325

1,920 8.08 7.41 24.25 0.9096 24.86 22.33 0.9312 0.9322

1,925 8.13 7.57 24.15 0.9113 24.95 22.38 0.9309 0.9320

1,930 8.17 7.70 24.26 0.9122 25.04 22.44 0.9307 0.9317

1,935 8.22 7.84 24.03 0.9081 25.14 22.51 0.9304 0.9314

1,940 7.97 7.73 23.75 0.9052 25.27 22.62 0.9301 0.9312

1,945 7.79 7.57 23.54 0.9141 25.38 22.72 0.9298 0.9309

1,950 7.58 7.41 23.32 0.9197 25.49 22.82 0.9296 0.9306

1,955 7.34 7.25 23.06 0.9159 25.58 22.91 0.9293 0.9304

1,960 7.11 7.07 22.69 0.9110 25.68 23.00 0.9290 0.9301

1,965 6.87 6.85 22.63 0.9147 25.77 23.10 0.9287 0.9298

1,970 6.63 6.63 22.63 0.9206 25.86 23.19 0.9284 0.9295

1,975 6.40 6.41 22.32 0.9267 25.95 23.29 0.9282 0.9292

1,980 6.17 6.19 22.15 0.9282 26.05 23.38 0.9279 0.9289

1,985 6.00 6.04 22.24 0.9269 26.16 23.50 0.9275 0.9286

1,990 5.86 5.88 22.27 0.9291 26.30 23.64 0.9272 0.9282

1,995 5.72 5.73 22.26 0.9349 26.53 23.88 0.9268 0.9278

2,000 0.9370

2,005 0.9291

2,010 0.9249

2,015 0.9366

2,020 0.9390

2,025 0.9404

2,030 0.9448

2,035 0.9560

2,040 0.9568
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2,045 0.9539

2,050 0.9438

2,055 0.9479

2,060 0.9526

2,065 0.9545

2,070 0.9545

2,075 0.9532

2,080 0.9506

2,085 0.9466

2,090 0.9449

2,095 0.9481

2,100 0.9512

2,105 0.9535

2,110 0.9522

2,115 0.9418

2,120 0.9311

2,125 0.9255

2,130 0.9219

2,135 0.9236

2,140 0.9238

2,145 0.9204

2,150 0.9191

2,155 0.9233

2,160 0.9399

2,165 0.9430

2,170 0.9413

2,175 0.9348

2,180 0.9255

2,185 0.9245

2,190 0.9257

2,195 0.9341

2,200 0.9381

2,205 0.9424

2,210 0.9434

2,215 0.9291

2,220 0.9198

2,225 0.9311

2,230 0.9544

2,235 0.9442

2,240 0.9335

2,245 0.9427

2,250 0.9611

2,255 0.9627

2,260 0.9609

2,265 0.9521

2,270 0.9420

2,275 0.9418

2,280 0.9431

2,285 0.9275

2,290 0.9145

2,295 0.9311

2,300 0.9422
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