7,190 research outputs found

    Scepticism and the genealogy of knowledge: situating epistemology in time

    Get PDF
    My overarching purpose is to illustrate the philosophical fruitfulness of expanding epistemology not only laterally across the social space of other epistemic subjects, but at the same time vertically in the temporal dimension. I set about this by first presenting central strands of Michael Williams' diagnostic engagement with scepticism, in which he crucially employs a Default and Challenge model of justification. I then develop three key aspects of Edward Craig's ‘practical explication' of the concept of knowledge so that they may be seen to resonate positively with Williams's epistemological picture: the admixture of internalist and externalist features; the proto-contextualism; and, finally, the distinctively genealogical antisceptical impetus. In this way I aim to support and augment the socialized anti-sceptical case mounted by Williams, and so to show that expanding epistemology in the temporal dimension can be a productive move in central debates in epistemology

    There\u27s a Sigh in the Heart

    Get PDF
    There\u27s a sigh in the heart, tho\u27 the lip may be gay,When we think of the land, the land far away.Blushing garlands around hang in wreaths from each spray,But the flow\u27rs that I lov\u27d when my spirti was gay,They are fading, unpluck\u27d in the land far away.There\u27s a sigh in the heart, tho\u27 the lip may be gayWhen we think of the land, the land far away.Sadly I gaze on the moon\u27s bright ratmAnd in fancy I follow its track far away.Sadly I list to the NIghtingale\u27s way,No hope of tomorrow to cheer me today.While my eye shall grow dim, and my tresses grow grayStill my last tho\u27t shall be of the land far away

    Two-choice regulation in heterogeneous closed networks

    Full text link
    A heterogeneous closed network with one-server queues with finite capacity and one infinite-server queue is studied. A target application is bike-sharing systems. Heterogeneity is taken into account through clusters whose queues have the same parameters. Incentives to the customer to go to the least loaded one-server queue among two chosen within a cluster are investigated. By mean-field arguments, the limiting queue length stationary distribution as the number of queues gets large is analytically tractable. Moreover, when all customers follow incentives, the probability that a queue is empty or full is approximated. Sizing the system to improve performance is reachable under this policy.Comment: 19 pages, 4 figure

    A Stochastic Model for Car-Sharing Systems

    Full text link
    Vehicle-sharing systems are becoming important for urban transportation. In these systems, users arrive at a station, pick up a vehicle, use it for a while and then return it to another station of their choice. Depending on the type of system, there might be a possibility to book vehicles before picking-up and/or a parking space at the chosen arrival station. Each station has a finite capacity and cannot host more vehicles and reserved parking spaces than its capacity. We propose a stochastic model for an homogeneous car-sharing system with possibility to reserve a parking space at the arrival station when picking-up a car. We compute the performance of the system and the optimal fleet size according to a specific metric. It differs from a similar model for bike-sharing systems because of reservation that induces complexity, especially when traffic increases

    Incentives and Redistribution in Homogeneous Bike-Sharing Systems with Stations of Finite Capacity

    Get PDF
    Bike-sharing systems are becoming important for urban transportation. In such systems, users arrive at a station, take a bike and use it for a while, then return it to another station of their choice. Each station has a finite capacity: it cannot host more bikes than its capacity. We propose a stochastic model of an homogeneous bike-sharing system and study the effect of users random choices on the number of problematic stations, i.e., stations that, at a given time, have no bikes available or no available spots for bikes to be returned to. We quantify the influence of the station capacities, and we compute the fleet size that is optimal in terms of minimizing the proportion of problematic stations. Even in a homogeneous city, the system exhibits a poor performance: the minimal proportion of problematic stations is of the order of (but not lower than) the inverse of the capacity. We show that simple incentives, such as suggesting users to return to the least loaded station among two stations, improve the situation by an exponential factor. We also compute the rate at which bikes have to be redistributed by trucks to insure a given quality of service. This rate is of the order of the inverse of the station capacity. For all cases considered, the fleet size that corresponds to the best performance is half of the total number of spots plus a few more, the value of the few more can be computed in closed-form as a function of the system parameters. It corresponds to the average number of bikes in circulation

    An investigation into the effects of solvent content on the image quality and stability of ink jet digital prints under varied storage conditions

    Full text link
    Increasing numbers of galleries, museums and archives are including ink jet printed materials into their collections, and therefore displays. There is evidence that the instability of these prints is such that images can suffer deterioration in print quality or in extreme cases, a loss of information over an extended period of time. This is shorter than the period typically required for perceptible deterioration to occur in many other paper-based artworks. The image stability of prints is affected by a number of factors some of which have already been studied. However the role played by the ink solvent in the loss of image quality has yet to be explored. This paper will outline research being undertaken to investigate the effects of solvent content which may increase/promote the loss in image quality of the hard copy prints when stored or displayed under a range of temperature and humidity conditions

    Perturbation analysis of an M/M/1 queue in a diffusion random environment

    Get PDF
    We study in this paper an M/M/1M/M/1 queue whose server rate depends upon the state of an independent Ornstein-Uhlenbeck diffusion process (X(t))(X(t)) so that its value at time tt is μϕ(X(t))\mu \phi(X(t)), where ϕ(x)\phi(x) is some bounded function and μ>0\mu>0. We first establish the differential system for the conditional probability density functions of the couple (L(t),X(t))(L(t),X(t)) in the stationary regime, where L(t)L(t) is the number of customers in the system at time tt. By assuming that ϕ(x)\phi(x) is defined by ϕ(x)=1ε((xa/ε)(b/ε))\phi(x) = 1-\varepsilon ((x\wedge a/\varepsilon)\vee(-b/\varepsilon)) for some positive real numbers aa, bb and ε\varepsilon, we show that the above differential system has a unique solution under some condition on aa and bb. We then show that this solution is close, in some appropriate sense, to the solution to the differential system obtained when ϕ\phi is replaced with Φ(x)=1εx\Phi(x)=1-\varepsilon x for sufficiently small ε\varepsilon. We finally perform a perturbation analysis of this latter solution for small ε\varepsilon. This allows us to check at the first order the validity of the so-called reduced service rate approximation, stating that everything happens as if the server rate were constant and equal to \mu(1-\eps\E(X(t)))

    A versatile and accurate approximation for LRU cache performance

    Full text link
    In a 2002 paper, Che and co-authors proposed a simple approach for estimating the hit rates of a cache operating the least recently used (LRU) replacement policy. The approximation proves remarkably accurate and is applicable to quite general distributions of object popularity. This paper provides a mathematical explanation for the success of the approximation, notably in configurations where the intuitive arguments of Che, et al clearly do not apply. The approximation is particularly useful in evaluating the performance of current proposals for an information centric network where other approaches fail due to the very large populations of cacheable objects to be taken into account and to their complex popularity law, resulting from the mix of different content types and the filtering effect induced by the lower layers in a cache hierarchy
    corecore