3,126 research outputs found

    Numerical simulation of heavy fermions in an SU(2)_L x SU(2)_R symmetric Yukawa model

    Full text link
    An exploratory numerical study of the influence of heavy fermion doublets on the mass of the Higgs boson is performed in the decoupling limit of a chiral SU(2)L⊗SU(2)R\rm SU(2)_L \otimes SU(2)_R symmetric Yukawa model with mirror fermions. The behaviour of fermion and boson masses is investigated at infinite bare quartic coupling on 43⋅84^3 \cdot 8, 63⋅126^3 \cdot 12 and 83⋅168^3 \cdot 16 lattices. A first estimate of the upper bound on the renormalized quartic coupling as a function of the renormalized Yukawa-coupling is given.Comment: 15 pp + 11 Figures appended as Postscript file

    A two-state model for helicase translocation and unwinding of nucleic acids

    Get PDF
    Helicases are molecular motors that unwind double-stranded nucleic acids (dsNA), such as DNA and RNA). Typically a helicase translocates along one of the NA single strands while unwinding and uses adenosine triphosphate (ATP) hydrolysis as an energy source. Here we model of a helicase motor that can switch between two states, which could represent two different points in the ATP hydrolysis cycle. Our model is an extension of the earlier Betterton-J\"ulicher model of helicases to incorporate switching between two states. The main predictions of the model are the speed of unwinding of the dsNA and fluctuations around the average unwinding velocity. Motivated by a recent claim that the NS3 helicase of Hepatitis C virus follows a flashing ratchet mechanism, we have compared the experimental results for the NS3 helicase with a special limit of our model which corresponds to the flashing ratchet scenario. Our model accounts for one key feature of the experimental data on NS3 helicase. However, contradictory observations in experiments carried out under different conditions limit the ability to compare the model to experiments.Comment: minor modification

    Mass Spectrum and Bounds on the Couplings in Yukawa Models With Mirror-Fermions

    Full text link
    The SU(2)L⊗SU(2)R\rm SU(2)_L\otimes SU(2)_R symmetric Yukawa model with mirror-fermions in the limit where the mirror-fermion is decoupled is studied both analytically and numerically. The bare scalar self-coupling λ\lambda is fixed at zero and infinity. The phase structure is explored and the relevant phase transition is found to be consistent with a second order one. The fermionic mass spectrum close to that transition is discussed and a first non-perturbative estimate of the influence of fermions on the upper and lower bounds on the renormalized scalar self-coupling is given. Numerical results are confronted with perturbative predictions.Comment: 7 (Latex) page

    Correlations in Hot Asymmetric Nuclear Matter

    Get PDF
    The single-particle spectral functions in asymmetric nuclear matter are computed using the ladder approximation within the theory of finite temperature Green's functions. The internal energy and the momentum distributions of protons and neutrons are studied as a function of the density and the asymmetry of the system. The proton states are more strongly depleted when the asymmetry increases while the occupation of the neutron states is enhanced as compared to the symmetric case. The self-consistent Green's function approach leads to slightly smaller energies as compared to the Brueckner Hartree Fock approach. This effect increases with density and thereby modifies the saturation density and leads to smaller symmetry energies.Comment: 7 pages, 7 figure

    Mode Coupling relaxation scenario in a confined glass former

    Full text link
    Molecular dynamics simulations of a Lennard-Jones binary mixture confined in a disordered array of soft spheres are presented. The single particle dynamical behavior of the glass former is examined upon supercooling. Predictions of mode coupling theory are satisfied by the confined liquid. Estimates of the crossover temperature are obtained by power law fit to the diffusion coefficients and relaxation times of the late α\alpha region. The bb exponent of the von Schweidler law is also evaluated. Similarly to the bulk, different values of the exponent γ\gamma are extracted from the power law fit to the diffusion coefficients and relaxation times.Comment: 5 pages, 4 figures, changes in the text, accepted for publication on Europhysics Letter

    Observation of a Turbulence-Induced Large Scale Magnetic Field

    Full text link
    An axisymmetric magnetic field is applied to a spherical, turbulent flow of liquid sodium. An induced magnetic dipole moment is measured which cannot be generated by the interaction of the axisymmetric mean flow with the applied field, indicating the presence of a turbulent electromotive force. It is shown that the induced dipole moment should vanish for any axisymmetric laminar flow. Also observed is the production of toroidal magnetic field from applied poloidal magnetic field (the omega-effect). Its potential role in the production of the induced dipole is discussed.Comment: 5 pages, 4 figures Revisions to accomodate peer-reviewer concerns; changes to main text including simplification of a proof, Fig. 2 updated, and minor typos and clarifications; Added refrences. Resubmitted to Phys. Rev. Let

    Multiple-scattering effects on incoherent neutron scattering in glasses and viscous liquids

    Full text link
    Incoherent neutron scattering experiments are simulated for simple dynamic models: a glass (with a smooth distribution of harmonic vibrations) and a viscous liquid (described by schematic mode-coupling equations). In most situations multiple scattering has little influence upon spectral distributions, but it completely distorts the wavenumber-dependent amplitudes. This explains an anomaly observed in recent experiments

    Compact Labelings For Efficient First-Order Model-Checking

    Get PDF
    We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of every class that is \emph{nicely locally cwd-decomposable}. This notion generalizes that of a \emph{nicely locally tree-decomposable} class. The graphs of such classes can be covered by graphs of bounded \emph{clique-width} with limited overlaps. We also consider such labelings for \emph{bounded} first-order formulas on graph classes of \emph{bounded expansion}. Some of these results are extended to counting queries

    Regularization of Linear Ill-posed Problems by the Augmented Lagrangian Method and Variational Inequalities

    Full text link
    We study the application of the Augmented Lagrangian Method to the solution of linear ill-posed problems. Previously, linear convergence rates with respect to the Bregman distance have been derived under the classical assumption of a standard source condition. Using the method of variational inequalities, we extend these results in this paper to convergence rates of lower order, both for the case of an a priori parameter choice and an a posteriori choice based on Morozov's discrepancy principle. In addition, our approach allows the derivation of convergence rates with respect to distance measures different from the Bregman distance. As a particular application, we consider sparsity promoting regularization, where we derive a range of convergence rates with respect to the norm under the assumption of restricted injectivity in conjunction with generalized source conditions of H\"older type
    • …
    corecore