72 research outputs found

    Spitzer Infrared Observations and Independent Validation of the Transiting Super-Earth CoRoT-7b

    Get PDF
    The detection and characterization of the first transiting super-Earth, CoRoT-7 b, has required an unprecedented effort in terms of telescope time and analysis. Although the star does display a radial velocity signal at the period of the planet, this has been difficult to disentangle from the intrinsic stellar variability, and pinning down the velocity amplitude has been very challenging. As a result, the precise value of the mass of the planet - and even the extent to which it can be considered to be confirmed - have been debated in the recent literature, with six mass measurements published so far based on the same spectroscopic observations, ranging from about 2 to 8 Earth masses. Here we report on an independent validation of the planet discovery, using one of the fundamental properties of a transit signal: its achromaticity. We observed four transits of CoRoT-7 b with Spitzer, in order to determine whether the depth of the transit signal in the near-infrared is consistent with that observed in the CoRoT bandpass, as expected for a planet. We detected the transit and found an average depth of 0.426 {\pm} 0.115 mmag at 4.5 {\mu}m, which is in good agreement with the depth of 0.350 {\pm} 0.011 mmag found by CoRoT. These observations place important constraints on the kinds of astrophysical false positives that could mimic the signal. Combining this with additional constraints reported earlier, we performed an exhaustive exploration of possible blends scenarios for CoRoT-7 b using the BLENDER technique. We are able to rule out the vast majority of false positives, and the remaining ones are found to be much less likely than a true transiting planet. We thus validate CoRoT-7 b as a bona-fide planet with a very high degree of confidence, independently of any radial-velocity information. Our Spitzer observations have additionally allowed us to significantly improve the ephemeris of the planet.Comment: Accepted by Ap

    The atmospheres of the hot-Jupiters Kepler-5b and Kepler-6b observed during occultations with Warm-Spitzer and Kepler

    Get PDF
    This paper reports the detection and the measurements of occultations of the two transiting hot giant exoplanets Kepler-5b and Kepler-6b by their parent stars. The observations are obtained in the near infrared with Spitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of constraining the eccentricities of these systems and of obtaining broad band emergent spectra for individual planets. For both targets, the occultations are detected at 3 sigma level at each wavelength with mid-occultation times consistent with circular orbits. The brightness temperatures of these planets are deduced from the infrared observations and reach T=1930+/-100K and T=1660+/-120K for Kepler-5b and Kepler-6b respectively. We measure optical geometric albedos A_g in the Kepler bandpass and find A_g=0.12+/-0.04 for Kepler-5b and A_g=0.11+/-0.04 for Kepler-6b leading to an upper limit for the Bond albedo of A_B < 0.17 in both cases. The observations for both planets are best described by models for which most of the incident energy is redistributed on the dayside, with only less than 10% of the absorbed stellar flux redistributed to the night side of these planets. The data for Kepler-5b favor a model without a temperature inversion, whereas for Kepler-6b they do not allow distinguishing between models with and without inversion.Comment: 26 pages, 18 figures, 3 tables, submitted to Ap

    Low False-Positive Rate of Kepler Candidates Estimated From A Combination Of Spitzer And Follow-Up Observations

    Get PDF
    (Abridged) NASA's Kepler mission has provided several thousand transiting planet candidates, yet only a small subset have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) amongst the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital and planetary parameter space, and we observe their transits with Spitzer at 4.5 microns. We use these observations to measures the candidate's transit depths and infrared magnitudes. A bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false-positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5-40%, depending on the KOIs. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3 sigma. This observational result, which uses the achromatic property of planetary transit signals that is not investigated by the Kepler observations, provides an independent indication that Kepler's false positive rate is low.Comment: 33 pages, 16 figures, 3 tables; accepted for publication in ApJ on February 7, 201

    The Broadband Infrared Emission Spectrum of the Exoplanet TrES-3

    Get PDF
    We use the Spitzer Space Telescope to estimate the dayside thermal emission of the exoplanet TrES-3 integrated in the 3.6, 4.5, 5.8, and 8.0 micron bandpasses of the Infrared Array Camera (IRAC) instrument. We observe two secondary eclipses and find relative eclipse depths of 0.00346 +/- 0.00035, 0.00372 +/- 0.00054, 0.00449 +/- 0.00097, and 0.00475 +/- 0.00046, respectively in the 4 IRAC bandpasses. We combine our results with the earlier K band measurement of De Mooij et al. (2009), and compare them with models of the planetary emission. We find that the planet does not require the presence of an inversion layer in the high atmosphere. This is the first very strongly irradiated planet that does not have a temperature inversion, which indicates that stellar or planetary characteristics other than temperature have an important impact on temperature inversion. De Mooij & Snellen (2009) also detected a possible slight offset in the timing of the secondary eclipse in K band. However, based on our 4 Spitzer channels, we place a 3sigma upper limit of |ecos(w)| < 0.0056 where e is the planets orbital eccentricity and w is the longitude of the periastron. This result strongly indicates that the orbit is circular, as expected from tidal circularization theory.Comment: Accepted by Ap

    Opto-thermo-mechanical numerical simulations of 3 different concepts of infrared achromatic phase shifters

    Get PDF
    The Darwin/TPF mission aims at detecting directly extra solar planets. It is based on the nulling interferometry, concept proposed by Bracewell in 1978, and developed since 1995 in several European and American laboratories. One of the key optical devices for this technique is the achromatic phase shifter (APS). This optical component is designed to produce a π phase shift over the whole Darwin spectral range (i.e. 6-18 μm), and will be experimentally tested on the NULLTIMATE consortium nulling test bench (Labèque et al). Three different concepts of APS are being simulated: dispersive plates focus crossing and field reversal. In this paper, we show how thermal, mechanical and optical models are merged into a single robust model, allowing a global numerical simulation of the optical component performances. We show how these simulations help us to optimizing the design and present results of the numerical model

    Kepler-93b: A Terrestrial World Measured to within 120 km, and a Test Case for a New Spitzer Observing Mode

    Get PDF
    We present the characterization of the Kepler-93 exoplanetary system, based on three years of photometry gathered by the Kepler spacecraft. The duration and cadence of the Kepler observations, in tandem with the brightness of the star, enable unusually precise constraints on both the planet and its host. We conduct an asteroseismic analysis of the Kepler photometry and conclude that the star has an average density of 1.652+/-0.006 g/cm^3. Its mass of 0.911+/-0.033 M_Sun renders it one of the lowest-mass subjects of asteroseismic study. An analysis of the transit signature produced by the planet Kepler-93b, which appears with a period of 4.72673978+/-9.7x10^-7 days, returns a consistent but less precise measurement of the stellar density, 1.72+0.02-0.28 g/cm^3. The agreement of these two values lends credence to the planetary interpretation of the transit signal. The achromatic transit depth, as compared between Kepler and the Spitzer Space Telescope, supports the same conclusion. We observed seven transits of Kepler-93b with Spitzer, three of which we conducted in a new observing mode. The pointing strategy we employed to gather this subset of observations halved our uncertainty on the transit radius ratio R_p/R_star. We find, after folding together the stellar radius measurement of 0.919+/-0.011 R_Sun with the transit depth, a best-fit value for the planetary radius of 1.481+/-0.019 R_Earth. The uncertainty of 120 km on our measurement of the planet's size currently renders it one of the most precisely measured planetary radii outside of the Solar System. Together with the radius, the planetary mass of 3.8+/-1.5 M_Earth corresponds to a rocky density of 6.3+/-2.6 g/cm^3. After applying a prior on the plausible maximum densities of similarly-sized worlds between 1--1.5 R_Earth, we find that Kepler-93b possesses an average density within this group.Comment: 20 pages, 9 figures, accepted for publication in Ap

    Two Earth-sized planets orbiting Kepler-20

    Get PDF
    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R Earth), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth (0.87R Earth), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.Comment: Letter to Nature; Received 8 November; accepted 13 December 2011; Published online 20 December 201
    • …
    corecore