90 research outputs found

    Ammonium toxicity – one cause for growth and quality impairments on organic fertilized basil?

    Get PDF
    Im ökologischen Anbau von Topfbasilikum treten des Öfteren Wachstums- und Qualitätsbeeinträchtigungen auf. Diese machen sich bereits an den Jungpflanzen in Form chlorotischer und nekrotischer Keimblätter bemerkbar. Nachfolgend können Infektionen mit Schwächeparasiten wie Botrytis auftreten. Im Rahmen eines Düngungsversuches sollte geklärt werden, inwieweit diese Probleme im Zusammenhang mit der Anreicherung von Ammo­nium stehen, welches durch die Mineralisierung organischer Dünger in das Kultursubstrat freigesetzt wird. Versuchsfaktoren waren das Ammonium-N/Nitrat-N-Verhältnis (100/0; 50/50; 0/100) und die Stickstoffkonzentration in der Nährlösung (8, 12 und 16 mmol N/L). Ammonium wurde mittels des Nitrifikationshemmstoffes 3,4-Dimethylpyrazolphosphat (DMPP) stabilisiert. Zusätzlich war in den Versuch eine organische N-Düngevariante einbezogen, die neben einer Grunddüngung mit festen Düngern (Hornspäne und DCM ECO-MIX 4) eine flüssige Nachdüngung (Organic Plant Feed) beinhaltete. Die Kultur der Pflanzen erfolgte in einem Torfsubstrat, das zu Versuchsbeginn auf pH 6,5 eingestellt war.Mit Nitrat (NO3-) als alleiniger Stickstoffquelle zeigte Basilikum über den gesamten Kulturzeitraum ein vitales Wachstum. Ein reines Ammoniumangebot (NH4+) ging, unabhängig von der N-Stufe, mit einer geringeren Keimrate sowie mit verminderten Pflanzenhöhen- und Frischmassezuwächsen einher. Außerdem waren hier chlorotische Keimblätter und eine verringerte Turgeszenz des Sprosses zu beobachten. In der organischen N-Dünge­variante blieb das Pflanzenwachstum zunächst ebenfalls hinter dem mit NO3--Angebot zurück. Des Weiteren waren hier die Schadsymptome an den Keimblättern besonders stark ausgeprägt. Im Zuge der Ammonifika­tion der organischen N-Dünger kam es in den ersten Versuchswochen zu einer Anreicherung von bis zu 350 mg NH4+-N/L Substrat als alleiniger mineralischer Stickstoffform. Mit fortschreitender Nitrifikation setzte dann ein stimuliertes Pflanzenwachstum ein. Zu Versuchsende wiesen die organisch gedüngten Pflanzen den höchsten NO3--Gehalt im Spross auf. Der kompakteste Wuchs und die höchste Turgeszenz der Pflanzen konnten mit ausgeglichenem NH4+/NO3--Angebot erzielt werden.In the organic production of pot grown basil yield depressions and quality impairments are often observed. During the early development stage cotyledons become chlorotic and necrotic. Subsequently, infections with secondary parasites such as Botrytis may occur. One possible reason for this problem could be the high concentration of ammonium in the growing media released by the mineralization of organic fertilizers. Therefore, a fertilization trial was carried out including different ammonium-N/nitrate-N ratios (100/0; 50/50; 0/100) and nitrogen concentrations in the nutrient solution (8, 12 and 16 mmol N/L). Plants were cultivated in a peat substrate and fertilized by using the ebb and flow technique. The applied nutrient solution contained, beside the different nitrogen sources, equal concentrations of a base fertilizer as well as the nitrification inhibitor 3,4-dimethylpyrazolephosphate (DMPP). In addition an organic fertilization treatment was realized using a solid base dressing (horn shavings and DCM ECO-MIX 4) and a liquid top dressing (Organic Plant Feed). The plants were cultivated in a peat substrate which was adjusted to an initial pH of 6.5.Basil fertilized solely with ammonium (NH4+) showed a diminished growth in comparison to well-developed plants receiving nitrate (NO3-) as nitrogen source. Germination rate, plant height and fresh matter yield of herbs were significantly reduced by NH4+ nutrition. Furthermore, chlorotic cotyledons and a reduction in turgidity of the shoot could be observed. Growth of plants receiving organic nitrogen initially also remained behind the NO3- treatment. Furthermore, with this nitrogen source cotyledons were most strongly affected by chlorosis, probably because the NH4+ concentration in the substrate rose up to 350 mg N/L at the beginning of the cultivation period. When nitrogen mineralization declined and NH4+ was increasingly converted to NO3-, plants exhibited improved growth. At the end of the experiment the NO3- content in basil shoots was highest in the organic N treatment. The most compact growth and the highest turgidity of plants were observed with balanced supply of NO3- and NH4+

    Variability in EIT Images of Lung Ventilation as a Function of Electrode Planes and Body Positions

    Get PDF
    This study is aimed at investigating the variability in resistivity changes in the lung region as a function of air volume, electrode plane and body position. Six normal subjects (33.8 ± 4.7 years, range from 26 to 37 years) were studied using the Sheffield Electrical Impedance Tomography (EIT) portable system. Three transverse planes at the level of second intercostal space, the level of the xiphisternal joint, and midway between upper and lower locations were chosen for measurements. For each plane, sixteen electrodes were uniformly positioned around the thorax. Data were collected with the breath held at end expiration and after inspiring 0.5, 1.0, or 1.5 liters of air from end expiration, with the subject in both the supine and sitting position. The average resistivity change in five regions, two 8x8 pixel local regions in the right lung, entire right, entire left and total lung regions, were calculated. The results show the resistivity change averaged over electrode positions and subject positions was 7-9% per liter of air, with a slightly larger resistivity change of 10 % per liter air in the lower electrode plane. There was no significant difference (p\u3e0.05) between supine and sitting. The two 8x8 regions show a larger inter individual variability (coefficient of variation, CV, is from 30% to 382%) compared to the entire left, entire right and total lung (CV is from 11% to 51%). The results for the global regions are more consistent. The large inter individual variability appears to be a problem for clinical applications of EIT, such as regional ventilation. The variability may be mitigated by choosing appropriate electrode plane, body position and region of interest for the analysis

    Assessing prioritization measures for a private land conservation program in the U.S. Prairie Pothole Region

    Get PDF
    Private land conservation has become an important tool for protecting biodiversity and habitat, but methods for prioritizing and scheduling conservation on private land are still being developed. While return on investment methods have been suggested as a potential path forward, the different processes linking private landscapes to the socioeconomic systems in which they are embedded create unique challenges for scheduling conservation with this approach. We investigated a range of scheduling approaches within a return on investment framework for breeding waterfowl and broods in the Prairie Pothole Region of North Dakota, South Dakota, and Montana. Current conservation targeting for waterfowl in the region focuses mostly on the distribution and abundance of breeding waterfowl. We tested whether MaxGain approaches for waterfowl conservation differed from MinLoss approaches in terms of return on investment and which approach performed best in avoiding loss of waterfowl and broods separately. We also examined variation in results based upon the temporal scale of the abundance layers used for input and compared the region's current scheduling approach with results from our simulations. Our results suggested that MinLoss was the most efficient scheduling approach for both breeding waterfowl and broods and that using just breeding waterfowl to target areas for conservation programs might cause organizations to overlook important areas for broods, particularly over shorter timespans. The higher efficiency of MinLoss approaches in our simulations also indicated that incorporating probability of wetland drainage into decision-making improved the overall return on investment. We recommend that future conservation scheduling for easements in the region and for private land conservation in general include some form of return on investment or cost-effective analysis to make conservation more transparent

    Short-term effects of neuromuscular blockade on global and regional lung mechanics, oxygenation and ventilation in pediatric acute hypoxemic respiratory failure

    Get PDF
    Background: Neuromuscular blockade (NMB) has been shown to improve outcome in acute respiratory distress syndrome (ARDS) in adults, challenging maintaining spontaneous breathing when there is severe lung injury. We tested in a prospective physiological study the hypothesis that continuous administration of NMB agents in mechanically ventilated children with severe acute hypoxemic respiratory failure (AHRF) improves the oxygenation index without a redistribution of tidal volume VT toward non-dependent lung zones. Methods: Oxygenation index, PaO2/FiO(2) ratio, lung mechanics (plateau pressure, mean airway pressure, respiratory system compliance and resistance), hemodynamics (heart rate, central venous and arterial blood pressures), oxygenation [ oxygenation index (OI), PaO2/FiO(2) and SpO(2)/FiO(2)], ventilation (physiological dead space-to-VT ratio) and electrical impedance tomography measured changes in end-expiratory lung volume (EELV), and VT distribution was measured before and 15 min after the start of continuous infusion of rocuronium 1 mg/kg. Patients were ventilated in a time-cycled, pressure-limited mode with pre-set VT. All ventilator settings were not changed during the study. Results: Twenty-two patients were studied (N = 18 met the criteria for pediatric ARDS). Median age (25-75 interquartile range) was 15 (7.8-77.5) weeks. Pulmonary pathology was present in 77.3%. The median lung injury score was 9 (8-10). The overall median CoV and regional lung filling characteristics were not affected by NMB, indicating no ventilation shift toward the non-dependent lung zones. Regional analysis showed a homogeneous time course of lung inflation during inspiration, indicating no tendency to atelectasis after the introduction of NMB. NMB decreased the mean airway pressure (p = 0.039) and OI (p = 0.039) in all patients. There were no significant changes in lung mechanics, hemodynamics and EELV. Subgroup analysis showed that OI decreased (p = 0.01) and PaO2/FiO(2) increased (p = 0.02) in patients with moderate or severe PARDS. Conclusions: NMB resulted in an improved oxygenation index in pediatric patients with AHRF. Distribution of VT and regional lung filling characteristics were not affected

    Defining and Detecting Malaria Epidemics in the Highlands of Western Kenya

    Get PDF
    Epidemic detection algorithms are being increasingly recommended for malaria surveillance in sub-Saharan Africa. We present the results of applying three simple epidemic detection techniques to routinely collected longitudinal pediatric malaria admissions data from three health facilities in the highlands of western Kenya in the late 1980s and 1990s. The algorithms tested were chosen because they could be feasibly implemented at the health facility level in sub-Saharan Africa. Assumptions of these techniques about the normal distribution of admissions data and the confidence intervals used to define normal years were also investigated. All techniques identified two “epidemic” years in one of the sites. The untransformed Cullen method with standard confidence intervals detected the two “epidemic” years in the remaining two sites but also triggered many false alarms. The performance of these methods is discussed and comments made about their appropriateness for the highlands of western Keny

    Physical activity as a possible mechanism behind the relationship between green space and health: A multilevel analysis

    Get PDF
    Background: The aim of this study was to investigate whether physical activity (in general, and more specifically, walking and cycling during leisure time and for commuting purposes, sports and gardening) is an underlying mechanism in the relationship between the amount of green space in people's direct living environment and self-perceived health. To study this, we first investigated whether the amount of green space in the living environment is related to the level of physical activity. When an association between green space and physical activity was found, we analysed whether this could explain the relationship between green space and health. Methods: The study includes 4.899 Dutch people who were interviewed about physical activity, self-perceived health and demographic and socioeconomic background. The amount of green space within a one-kilometre and a three-kilometre radius around the postal code coordinates was calculated for each individual. Multivariate multilevel analyses and multilevel logistic regression analyses were performed at two levels and with controls for socio-demographic characteristics and urbanicity. Results: No relationship was found between the amount of green space in the living environment and whether or not people meet the Dutch public health recommendations for physical activity, sports and walking for commuting purposes. People with more green space in their living environment walked and cycled less often and fewer minutes during leisure time; people with more green space garden more often and spend more time on gardening. Furthermore, if people cycle for commuting purposes they spend more time on this if they live in a greener living environment. Whether or not people garden, the time spent on gardening and time spent on cycling for commuting purposes did not explain the relationship between green space and health. Conclusion: Our study indicates that the amount of green space in the living environment is scarcely related to the level of physical activity. Furthermore, the amount of physical activity undertaken in greener living environments does not explain the relationship between green space and health.

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe
    corecore