688 research outputs found

    Dynamical Casimir effect for a massless scalar field between two concentric spherical shells

    Full text link
    In this work we consider the dynamical Casimir effect for a massless scalar field -- under Dirichlet boundary conditions -- between two concentric spherical shells. We obtain a general expression for the average number of particle creation, for an arbitrary law of radial motion of the spherical shells, using two distinct methods: by computing the density operator of the system and by calculating the Bogoliubov coefficients. We apply our general expression to breathing modes: when only one of the shells oscillates and when both shells oscillate in or out of phase. We also analyze the number of particle production and compare it with the results for the case of plane geometry.Comment: Final version. To apear in Physical Review

    Efficacy of Anakinra for Various Types of Crystal-Induced Arthritis in Complex Hospitalized Patients: A Case Series and Review of the Literature

    Get PDF
    International audienceBackground. There are few data on anakinra use after failure of conventional medications for crystal-induced peripheral arthritis and/or crowned dens syndrome among complex hospitalized patients. Methods. We retrospectively analyzed the outcome of six patients affected with subacute crystal-induced arthritis who had received anakinra in second or third line therapy, including three patients with crowned dens syndrome and three others with gouty arthritis. Patients' comorbidities, reasons for anakinra use and associated drugs, and outcomes were recorded. Results. All patients presented with elevated inflammatory syndrome, systemic symptoms with poly/oligoarthritis. Except for absolute contraindications, all patients were previously treated with full or decreased dose of NSAID, colchicine, and/or glucocorticoids, with unsatisfactory response. All three gouty patients exhibited complete responses in all acute involvements under anakinra within 3 to 5 days, including one of them who needed the reintroduction of colchicine treatment that was previously unsuccessful. Crowned dens syndrome patients, including two with pseudogout and one with subacute hydroxyapatite deposition disease, needed 9 to 11 days to achieve complete response. Tolerance to anakinra was good. Conclusion. In case series of complex hospitalized patients, anakinra showed good activity in crowned dens syndrome and associated crystal-induced peripheral arthritis, with longer treatment duration than in gouty arthritis

    Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene

    Get PDF
    For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering -- creating an elevated carrier temperature -- and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy, and fluence over a wide range. We find that sufficiently low fluence (\lesssim 4 μ\muJ/cm2^2) in conjunction with sufficiently high Fermi energy (\gtrsim 0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies, and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201

    Mechanisms for Stable Sonoluminescence

    Get PDF
    A gas bubble trapped in water by an oscillating acoustic field is expected to either shrink or grow on a diffusive timescale, depending on the forcing strength and the bubble size. At high ambient gas concentration this has long been observed in experiments. However, recent sonoluminescence experiments show that in certain circumstances when the ambient gas concentration is low the bubble can be stable for days. This paper presents mechanisms leading to stability which predict parameter dependences in agreement with the sonoluminescence experiments.Comment: 4 pages, 3 figures on request (2 as .ps files

    On directed information theory and Granger causality graphs

    Full text link
    Directed information theory deals with communication channels with feedback. When applied to networks, a natural extension based on causal conditioning is needed. We show here that measures built from directed information theory in networks can be used to assess Granger causality graphs of stochastic processes. We show that directed information theory includes measures such as the transfer entropy, and that it is the adequate information theoretic framework needed for neuroscience applications, such as connectivity inference problems.Comment: accepted for publications, Journal of Computational Neuroscienc

    Casimir Energy for a Spherical Cavity in a Dielectric: Applications to Sonoluminescence

    Get PDF
    In the final few years of his life, Julian Schwinger proposed that the ``dynamical Casimir effect'' might provide the driving force behind the puzzling phenomenon of sonoluminescence. Motivated by that exciting suggestion, we have computed the static Casimir energy of a spherical cavity in an otherwise uniform material. As expected the result is divergent; yet a plausible finite answer is extracted, in the leading uniform asymptotic approximation. This result agrees with that found using zeta-function regularization. Numerically, we find far too small an energy to account for the large burst of photons seen in sonoluminescence. If the divergent result is retained, it is of the wrong sign to drive the effect. Dispersion does not resolve this contradiction. In the static approximation, the Fresnel drag term is zero; on the mother hand, electrostriction could be comparable to the Casimir term. It is argued that this adiabatic approximation to the dynamical Casimir effect should be quite accurate.Comment: 23 pages, no figures, REVTe

    Theory of quantum radiation observed as sonoluminescence

    Get PDF
    Sonoluminescence is explained in terms of quantum radiation by moving interfaces between media of different polarizability. In a stationary dielectric the zero-point fluctuations of the electromagnetic field excite virtual two-photon states which become real under perturbation due to motion of the dielectric. The sonoluminescent bubble is modelled as an optically empty cavity in a homogeneous dielectric. The problem of the photon emission by a cavity of time-dependent radius is handled in a Hamiltonian formalism which is dealt with perturbatively up to first order in the velocity of the bubble surface over the speed of light. A parameter-dependence of the zero-order Hamiltonian in addition to the first-order perturbation calls for a new perturbative method combining standard perturbation theory with an adiabatic approximation. In this way the transition amplitude from the vacuum into a two-photon state is obtained, and expressions for the single-photon spectrum and the total energy radiated during one flash are given both in full and in the short-wavelengths approximation when the bubble is larger than the wavelengths of the emitted light. It is shown analytically that the spectral density has the same frequency-dependence as black-body radiation; this is purely an effect of correlated quantum fluctuations at zero temperature. The present theory clarifies a number of hitherto unsolved problems and suggests explanations for several more. Possible experiments that discriminate this from other theories of sonoluminescence are proposed.Comment: Latex file, 28 pages, postscript file with 3 figs. attache

    Carbamylated low-density lipoprotein induces endothelial dysfunction

    Get PDF
    Aims Cardiovascular events remain the leading cause of death in Western world. Atherosclerosis is the most common underlying complication driven by low-density lipoproteins (LDL) disturbing vascular integrity. Carbamylation of lysine residues, occurring primarily in the presence of chronic kidney disease (CKD), may affect functional properties of lipoproteins; however, its effect on endothelial function is unknown. Methods and results Low-density lipoprotein from healthy donors was isolated and carbamylated. Vascular reactivity after treatment with native LDL (nLDL) or carbamylated LDL (cLDL) was examined in organ chambers for isometric tension recording using aortic rings of wild-type or lectin-like-oxidized LDL receptor-1 (LOX-1) transgenic mice. Reactive oxygen species (ROS) and nitric oxide (NO) production were determined using electron spin resonance spectroscopy. The effect of LDL-carbamyl-lysine levels on cardiovascular outcomes was determined in patients with CKD during a median follow-up of 4.7 years. Carbamylated LDL impaired endothelium-dependent relaxation to acetylcholine or calcium-ionophore A23187, but not endothelium-independent relaxation to sodium nitroprusside. In contrast, nLDL had no effect. Carbamylated LDL enhanced aortic ROS production by activating NADPH-oxidase. Carbamylated LDL stimulated endothelial NO synthase (eNOS) uncoupling at least partially by promoting S-glutathionylation of eNOS. Carbamylated LDL-induced endothelial dysfunction was enhanced in LOX-1 transgenic mice. In patients with CKD, LDL-carbamyl-lysine levels were significant predictors for cardiovascular events and all-cause mortality. Conclusions Carbamylation of LDL induces endothelial dysfunction via LOX-1 activation and increased ROS production leading to eNOS uncoupling. This indicates a novel mechanism in the pathogenesis of atherosclerotic disease which may be pathogenic and prognostic in patients with CKD and high plasma levels of cLD
    corecore