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Mechanisms for Stable Single Bubble Sonoluminescence
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A gas bubble trapped in water by an oscillating acoustic field is expected to either shrink or grow
on a diffusive time scale, depending on the forcing strength and the bubble size. At high ambient gas
concentration this has long been observed. However, recent sonoluminescence experiments show that
when the ambient gas concentration is low the bubble can be stable for days. This paper discusses
mechanisms leading to stability.

PACS numbers: 78.60.Mq, 42.65.Re, 43.25.+y, 47.40.Nm

Recent experiments on sonoluminescence (SL) [1-7ént radius remains constant for billions of cycles, as evi-
allow detailed studies of the dynamics of a bubble levitatedlenced by the constant phageof the light emission rela-
in a periodic acoustic field. Besides the light emissiontive to the oscillatory forcing. Barber and Putterman [2]
itself, one of the greatest mysteries is how the bubbleshowed that the “jiggle” in the phase differs by less than
can exist in a stable state for many billions of cycles.50 psec from cycle to cycle. In the second type of stable
Measurements of the time between successive light flash&l., the bubble also persists for long periods althodgh
show that the total mass of the bubble remains constarfand hencer,) varies on a diffusive time scale [1,5]. The
to high accuracy [1,2,7]. This result contradicts classicahmbient radius grows until the bubble becomes parametri-
notions about the dynamics of periodically forced bubblescally unstable [5,13] and microbubbles pinch off. Experi-
An unforced bubble of ambient radiug dissolves over ments [5] show that this cycle can repeat indefinitely.
a diffusive time scaler ~ poR}/D(co — c-) [8], where Transitions between the types of stable SL occur as a
po is the ambient gas density in the bubble, is the function of the gas concentratien as well as the forcing
diffusion constant of the gas in the liquidy is the pressure. For pure argon bubbles wheric, is between
saturated concentration of the gas in the liquid, ands  approximately0.06 and0.25, ¢ oscillates on a diffusive
the concentration of gas in the liquid far from the bubble.time scale. At lower argon concentration/co = 0.004
A strongly forced bubble grows by rectified diffusion, asthe phase becomes perfectly stable [5].
first discovered by Blake [9,11]. This is because when Many of the dynamical phenomena exhibited by the SL
the bubble radius is large, the gas pressure in the bubblxperiments, including the existence of a stable bubble,
is small, resulting in a strong mass flux into the bubble might occur independently of the light emission. To study
Conversely, when the bubble radius is small there is &his question, we analyze the stability of a bubble with a
strong mass outflux. Since the diffusive time scale is muclsimple model for the dynamics: although the model ne-
larger than the short time the bubble spends at small radiglects many effects important for SL (including the light
gas cannot escape from the bubble during compressioemission), it exhibits the qualitative features of both types
the net effect is bubble growth. At a special value of theof stable SL. Wher../c( is decreased at high enough
ambient radiusR; rectified diffusion and normal diffusion forcing pressures, the classical unstable equilibrium point
balance. However, the above arguments suggest that thi undergoes a bifurcation and stabilizes [14]. In general,
equilibrium point isunstable if the ambient radius is there can beseveralstable equilibria, although far from
infinitesimally different fromR;, the bubble is pushed equilibrium small bubbles shrink and large bubbles grow.
away from equilibrium. The classic papers on rectifiedFor higher P, the window of stability closes, and the
diffusion (see, e.g., Eller and Crum [10-12]) verified thebubble can only survive through rectified diffusion fol-
qualitative picture described above wherycy = 1. lowed by parametric instability. These results apply to

There are two controlled parameters in the SL experiany bubble oscillating at small enough/co, regardless
ments: the forcing pressui®, and the gas concentration of whether the forcing is strong enough to produce SL.
c». The key to the discovery cftablesingle bubble SL  Once the bubble enters the SL regime the simple theory
(whose existence completely contradicts the above scenight break down. For example, Lofstaglk al. suggest
nario) by Gaitanet al.[1] was that (i) c</co < 1, and that nondiffusive effects [7] are necessary to account for
(i) P, must lie between a lower critical pressure and arstable air bubbles at strong forcing pressures. Our cal-
upper critical pressure both of which dependean Two  culations of a dynamical model for specific nondiffusive
different types of stable SL exist: In the first, the ambi-effects show that they can indeed stabilize an unstable
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equilibrium. The calculations suggest an experimentapressureP, = 1 atm. The pressure inside the bubble

test to determine whether diffusive or nondiffusive effectsvaries adiabatically likep(R) ~ (R? — a3)~'4.

dominate the SL experiments.

We first set up a formalism for studying the stability of

Here
a = Ry/8.73 is the hard core van der Waals radius.
Figure 1 shows p),/P, for several values oP,. For

the equilibrium point, following Fyrillas and Szeri[15] and small P,,, { p), monotonically decays witlR,, signaling
Lofstedtet al. [7]. Let c¢(r, t) denote the concentration of a diffusively unstableequilibrium. For example, when

gas dissolved in the liquid a distanedrom the center of
the bubble. For > R(r), whereR(¢) is the radius of the
bubble,c satisfies a convection diffusion equation
R’R
dic + —-9d,c = DVZc.
r

(1)

c/co = 1 with aforcing amplitude oP, = 0.8 the unsta-

ble equilibrium occurs aky, = 5 um. Note that at large

Ry the bubble becomes unstable to shape oscillations [13].
At large P,, however,(p), develops oscillations as a

function of Ry, so for a range ot./cq there areseveral

stable equilibrium points. As an example, see the inset

The boundary conditions are given by Henry's lawof Fig. 1: whenc../co = 1072 and P, = 1.25 atm, there

c¢(R,t) = coP(R,1)/Pyand byc(e, t) = c.. The concen-
tration gradient at the boundary gives the mass/igais
of the bubbleM = 47 R>Da,c|r()-

are stable equilibria (denoted by small dots in the figure)
atRy, = 6.5, 6.8, 7.1, 7.5, 8.0, and 8.5 um. To further
verify the existence ofmultiple stable equilibria, we have

These equations determine the growth of the bubble assolved the full equations (1) and (5) numerically with a

function of time. There are two crucial observations: First,standard finite difference scheme.

Eller noted that changing coordinatesite= (r* — R?)/3
andr = [" R*dr transfers Eq. (1) to the simpler form

34 4/3
d,c = Dah|:<l + F) ahCi| =0. (2)

For the following it is convenient to define theaverage
of afunctionf(¢) by ( f(¢)); = [ f(t)R(t)*dt/ [ R(t)* dt.

Indeed, the ambient
radius saturates adlifferent values, depending on the
initial bubble size. These equilibria are approached both
from above and from below. Details will be published
elsewhere [19].

We now outline the predictions of these calculations for
experiments. A common protocol in the SL experiments
[1,3] is to slowly increase the driving pressuPg. The

The second observation [7,15] is that the bubble radiugitial ambient radius depends on the preparation of the
changes over a much faster time scale than the ambieptibble. At low pressures the bubble shrinks, singe<
radius. Averaging Eq. (2) over the fast time scale givegc),. As the forcing pressure is increased, there is a

the dynamics of the ambient radius,

w2 R0 _ pex = (c(R(D). Rol0))
Pofto " yr [5dh/{1 + 3h/R3),
Equilibrium points satisfy
(P)r _ =
Po - C(). (4)

The equilibrium is stable if the quantit$ = d{p)./dRy
is positive.

Now we proceed to analyze this model. We calculate

numerically( p), as a function oy, for different driving
pressures, by averaging solution®(r) of the Rayleigh-

Plesset (RP) equation. The RP equation [6,16,17] governsy
the dynamics of an acoustically forced bubble, and is ¥ 0.6

given by
RE + 22 = L[p®.0) - P(t) — Py] +
2 Pw PwCw
d R 20
X — - — 4y — — .
o [p(R.1) = P(D)] — 4v DR
)

critical pressure where equilibrium points (both stable and
unstable) appear in the parametrically stable region [20]:
calculations forc../cy = 0.25 indicate this occurs near

1 atm. Above this forcing pressure, the bubble can follow
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FIG. 1. (p),/Py as a function ofR, (in um) for P, = 0.8,

7.2

We use parameters corresponding to [3,6,18] an a.9, 1, 1.1, 1.2, and1.25 atm, top to bottom. Equilibrium cor-
bubble in water: the surface tension of the air-waterresponds td p),/Py = c=/co. The equilibrium is diffusively

interface iso = 0.073 kg/s?, while water has viscosity
v = 107 m?/s, densityp,, = 1000 kg/m?, and speed of
soundc,, = 1481 m/s. The acoustic field is driven via
P(t) = P,coqwt) with w /27 = 26.4 kHz and external

stable if the slope8 = d{p),/dR, is positive. Inset: An en-
largement ofP, = 1.25 atm. The straight line corresponds to
c./co = 1072, The intersection of the straight line with the
curve corresponds to equilibrium points. Whgn> 0 (the
solid dots in the figure) the equilibrium is stable.
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three different scenarios, depending on its ambient radiusom water to 0.07 cn?/sec changesRn.x by 30%.
Ro: (@) If Ry is smaller than all equilibrium radii, the Increasing the forcing pressure by 0.05 atm (the error in
bubble shrinks. (b) IfRy is near a stable equilibrium, experiments [3]) increased..x by 20%. The uncertainty
the bubble is attracted to it and thus maintains a constar the effective values of all the aforementioned quantities
ambient radius thereafter. (c) Ky is larger than all the during SL translates into uncertainties in predicted posi-
equilibrium radii, the bubble grows by rectified diffusion. tions for the stable equilibria. However, our qualitative
The particular scenario that occurs depends on the initiatonclusions are robust, occurring throughout the relevant
Ro and so could vary from experiment to experiment.range of parameter space.
Also note that the system is hysteretic: the sequence of Multiple stable equilibria exist for a range of forcing
states occurring when the forcing pressure increases wiiressures for any../co < 1; although these states gen-
not, in general, be repeated when the forcing pressurerally occur at high forcing, the bubble oscillations need
decreases. In the experiments of Barkeral. [3], the  not be strong enough to produce light [25]. What parame-
bubble initially follows (c), growing by rectified diffusion. ter regime corresponds to SL in the simplified model? No
When the ambient radius becomes large the bubble isstablished criterion exists, though experiments [3,26] sug-
parametrically unstable; the bubble can decrease its radiggst that the collapse ratiy,.x /Ry is the relevant parame-
by pinching off a microbubble. As the forcing pressureter. Forc./co = 0.2, the stable equilibria have collapse
is further increased, the bubble continues diffusive growthratios R,.x /Ry = 3; for c«/co = 0.004, Rpax/Ro = 7.
followed by microbubble pinchoff; the ambient radius is The formerc../cq corresponds to the strongest SL for air
thus controlled by the parametric instability line [13]. bubbles; the latter corresponds to the new phase (i.e., the
Eventually, for even largeP,, microbubble pinchoff is low c.. phase) of SL recently discovered [5] for argon bub-
severe enough to place the ambient radius near a stalides. The largest discrepancy between this simple model
equilibrium, after which the bubble follows scenario (b). and SL experiments is its inability to explain why the
Note that this transition from a “jiggling” bubble to a stable strongest light emission occurs at a much largefc in
bubble should always be accompanied by a discontinuousir bubbles than argon bubbles.
jump in the ambient radius. Such jumps are observed This discrepancy is the basic reason for Lofstetcl.’s
by Barberet al. [3] for air bubbles near the onset of SL. speculation that “nondiffusive” effects may be necessary
Forc./co = 0.25 the stable state persists umtj] = 1.15;  to explain stable SL in air. We have verified through
aboveP, = 1.15 within the simple model the equilibrium dynamical calculations that a simple nondiffusive effect
point destabilizes. The bubble must return to diffusivecan stabilize an otherwise unstable equilibrium point [27]:
growth followed by microbubble pinching to survive. At the increase of the mass diffusion constdntifh Eq. (3)]
even largerP, all parametrically stable bubbles shrink, so with temperature and pressure. When the bubble pressure
the continued existence of a stable bubble is impossibleand temperature is high, the diffusion constant near the
The sequence of events predicted by the simplified modeédubble wall idarger than the diffusion constant in the bulk
is qualitatively similar to those in the SL experiments.  liquid, leading to additional mass outflux from the bubble.
The stable equilibrium points are ultimately due to This increase in the interfacial diffusion constant can be
oscillations in{p), as a function ofRy, which arise from studied with a simple model: Whenever the pressure in-
resonances in the Rayleigh-Plesset equation. Oscillatiorside the bubble exceeds a critical pressugg, we discon-
even occur in the maximum radius as a functionRgf  tinuously increase the diffusion constant near the bubble
so that in some situations adding more gas to a bubbleall by a factorfy,..s. The diffusion constant in the bulk
decreases its maximum size. A comparison with thdiquid remains constant, since high pressures and tempera-
Mathieu equation is instructive: If the eigenfrequency (intures are localized near the bubble wall. Numerical simu-
the RP equation this depends Ry) is an integer or half lations of the full equations [19] with and without this
integer fraction of the forcing frequency, the amplitude ofeffect demonstrate that the unstable equilibrium point can
the oscillations is anomalously large. A detailed study isbe stabilized for a wide range @fes and fines. The po-
in progress [19]. sition of the equilibrium point is shifted to larger radii, as
Quantitative agreement between the simple modepredicted by Lofstadet al. [7].
and the SL experiments requires accounting for several A central question for both theory and experiment is
neglected effects. These include realistic heat transfatetermining the parameter ranges where diffusive effects
[6,21,22] and equations of state for the gas [23], as welalone produce a stable bubble. The present results suggest
as spatial variations of the pressure within the bubbléhat the qualitative features of the bubble dynamics in
[23,24]. To illustrate the dependence of solutions of theSL experiments also arise within classical theories of
RP equation on material parameters, considér3aum  bubble dynamics. Answering definitively whether novel
bubble at forcing pressu®, = 1.3 atm. Upon changing effects are needed to explain stable SL is complicated by
v = 1 (isothermal) toy = 1.4 (adiabatic) the maximum modeling uncertainties. The present calculations provide
radius Ri,.x changes by 20%; setting the surface tensiomualitative criteria to assist in answering this question:
to zero changeR,x by 50%; changing the fluid viscosity although both diffusive and nondiffusive effects can lead to
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