
VOLUME 76, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 12 FEBRUARY 1996

2139

0637

row
t gas
w that
usses

1158
Mechanisms for Stable Single Bubble Sonoluminescence

Michael P. Brenner,1 Detlef Lohse,2,3 David Oxtoby,4 and Todd F. Dupont3

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 0
2Fachbereich Physik der Universität Marburg, Renthof 6, 35032 Marburg, Germany

3Department of Mathematics, The University of Chicago, Chicago, Illinois 60637
4Department of Chemistry and James Franck Institute, The University of Chicago, Chicago, Illinois 6

(Received 11 October 1995)

A gas bubble trapped in water by an oscillating acoustic field is expected to either shrink or g
on a diffusive time scale, depending on the forcing strength and the bubble size. At high ambien
concentration this has long been observed. However, recent sonoluminescence experiments sho
when the ambient gas concentration is low the bubble can be stable for days. This paper disc
mechanisms leading to stability.

PACS numbers: 78.60.Mq, 42.65.Re, 43.25.+y, 47.40.Nm
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Recent experiments on sonoluminescence (SL) [1–
allow detailed studies of the dynamics of a bubble levitat
in a periodic acoustic field. Besides the light emissio
itself, one of the greatest mysteries is how the bubb
can exist in a stable state for many billions of cycle
Measurements of the time between successive light flas
show that the total mass of the bubble remains const
to high accuracy [1,2,7]. This result contradicts classic
notions about the dynamics of periodically forced bubble
An unforced bubble of ambient radiusR0 dissolves over
a diffusive time scale,t , r0R2

0yDsc0 2 c`d [8], where
r0 is the ambient gas density in the bubble,D is the
diffusion constant of the gas in the liquid,c0 is the
saturated concentration of the gas in the liquid, andc` is
the concentration of gas in the liquid far from the bubbl
A strongly forced bubble grows by rectified diffusion, a
first discovered by Blake [9,11]. This is because whe
the bubble radius is large, the gas pressure in the bub
is small, resulting in a strong mass flux into the bubbl
Conversely, when the bubble radius is small there is
strong mass outflux. Since the diffusive time scale is mu
larger than the short time the bubble spends at small ra
gas cannot escape from the bubble during compressi
the net effect is bubble growth. At a special value of th
ambient radiusRp

0 rectified diffusion and normal diffusion
balance. However, the above arguments suggest that
equilibrium point is unstable; if the ambient radius is
infinitesimally different fromRp

0 , the bubble is pushed
away from equilibrium. The classic papers on rectifie
diffusion (see, e.g., Eller and Crum [10–12]) verified th
qualitative picture described above whenc`yc0 ø 1.

There are two controlled parameters in the SL expe
ments: the forcing pressurePa and the gas concentration
c`. The key to the discovery ofstablesingle bubble SL
(whose existence completely contradicts the above s
nario) by Gaitanet al. [1] was that (i) c`yc0 , 1, and
(ii) Pa must lie between a lower critical pressure and a
upper critical pressure both of which depend onc`. Two
different types of stable SL exist: In the first, the amb
0031-9007y96y76(7)y1158(4)$06.00
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ent radius remains constant for billions of cycles, as e
denced by the constant phasef of the light emission rela-
tive to the oscillatory forcing. Barber and Putterman [2
showed that the “jiggle” in the phase differs by less tha
50 psec from cycle to cycle. In the second type of stab
SL, the bubble also persists for long periods althoughf

(and henceR0) varies on a diffusive time scale [1,5]. The
ambient radius grows until the bubble becomes parame
cally unstable [5,13] and microbubbles pinch off. Exper
ments [5] show that this cycle can repeat indefinitely.

Transitions between the types of stable SL occur a
function of the gas concentrationc` as well as the forcing
pressure. For pure argon bubbles whenc`yc0 is between
approximately0.06 and 0.25, f oscillates on a diffusive
time scale. At lower argon concentrationc`yc0 ­ 0.004
the phase becomes perfectly stable [5].

Many of the dynamical phenomena exhibited by the S
experiments, including the existence of a stable bubb
might occur independently of the light emission. To stud
this question, we analyze the stability of a bubble with
simple model for the dynamics: although the model n
glects many effects important for SL (including the ligh
emission), it exhibits the qualitative features of both typ
of stable SL. Whenc`yc0 is decreased at high enoug
forcing pressures, the classical unstable equilibrium po
Rp

0 undergoes a bifurcation and stabilizes [14]. In gener
there can beseveralstable equilibria, although far from
equilibrium small bubbles shrink and large bubbles gro
For higher Pa the window of stability closes, and the
bubble can only survive through rectified diffusion fo
lowed by parametric instability. These results apply
any bubble oscillating at small enoughc`yc0, regardless
of whether the forcing is strong enough to produce S
Once the bubble enters the SL regime the simple the
might break down. For example, Löfstadtet al. suggest
that nondiffusive effects [7] are necessary to account
stable air bubbles at strong forcing pressures. Our c
culations of a dynamical model for specific nondiffusiv
effects show that they can indeed stabilize an unsta
© 1996 The American Physical Society
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equilibrium. The calculations suggest an experimen
test to determine whether diffusive or nondiffusive effec
dominate the SL experiments.

We first set up a formalism for studying the stability o
the equilibrium point, following Fyrillas and Szeri [15] and
Löfstedtet al. [7]. Let csr , td denote the concentration of
gas dissolved in the liquid a distancer from the center of
the bubble. Forr . Rstd, whereRstd is the radius of the
bubble,c satisfies a convection diffusion equation

≠tc 1
R2 ÙR
r2 ≠rc ­ D=2c . (1)

The boundary conditions are given by Henry’s law
csR, td ­ c0PsR, tdyP0 and bycs`, td ­ c`. The concen-
tration gradient at the boundary gives the mass lossygain
of the bubble ÙM ­ 4pR2D≠rcjRstd.

These equations determine the growth of the bubble a
function of time. There are two crucial observations: Firs
Eller noted that changing coordinates toh ­ sr3 2 R3dy3
andt ­

Rt R4 dt transfers Eq. (1) to the simpler form

≠tc ­ D≠h

∑µ
1 1

3h
R3

∂4y3

≠hc

∏
­ 0 . (2)

For the following it is convenient to define thet average
of a functionfstd by k fstdlt ­

R
fstdRstd4 dty

R
Rstd4 dt.

The second observation [7,15] is that the bubble rad
changes over a much faster time scale than the amb
radius. Averaging Eq. (2) over the fast time scale giv
the dynamics of the ambient radius,

r0R2
0

dR0

dt
­ D

c` 2 kcsssRstd, R0stddddltR`
0 dhyk1 1 3hyR3lt

. (3)

Equilibrium points satisfy

kplt

P0
­

c`

c0
. (4)

The equilibrium is stable if the quantityb ­ dkpltydR0

is positive.
Now we proceed to analyze this model. We calcula

numericallykplt as a function ofR0, for different driving
pressures, byt averaging solutionsRstd of the Rayleigh-
Plesset (RP) equation. The RP equation [6,16,17] gove
the dynamics of an acoustically forced bubble, and
given by

RR̈ 1
3
2

ÙR2 ­
1

rw
fpsR, td 2 Pstd 2 P0g 1

R
rwcw

3
d
dt

fpsR, td 2 Pstdg 2 4n
ÙR
R

2
2s

rwR
.

(5)

We use parameters corresponding to [3,6,18] an
bubble in water: the surface tension of the air-wat
interface iss ­ 0.073 kgys2, while water has viscosity
n ­ 1026 m2ys, densityrw ­ 1000 kgym3, and speed of
soundcw ­ 1481 mys. The acoustic field is driven via
Pstd ­ Pa cossvtd with vy2p ­ 26.4 kHz and external
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pressureP0 ­ 1 atm. The pressure inside the bubb
varies adiabatically likepsRd , sR3 2 a3d21.4. Here
a ­ R0y8.73 is the hard core van der Waals radius.

Figure 1 showskpltyP0 for several values ofPa. For
small Pa, kplt monotonically decays withR0, signaling
a diffusively unstableequilibrium. For example, when
c`yc0 ­ 1 with a forcing amplitude ofPa ­ 0.8 the unsta-
ble equilibrium occurs atR0 ø 5 mm. Note that at large
R0 the bubble becomes unstable to shape oscillations [

At large Pa, however,kplt develops oscillations as a
function of R0, so for a range ofc`yc0 there areseveral
stable equilibrium points. As an example, see the in
of Fig. 1: whenc`yc0 ­ 1022 andPa ­ 1.25 atm, there
are stable equilibria (denoted by small dots in the figu
at R0 ­ 6.5, 6.8, 7.1, 7.5, 8.0, and 8.5 mm. To further
verify the existence ofmultiple stable equilibria, we have
solved the full equations (1) and (5) numerically with
standard finite difference scheme. Indeed, the amb
radius saturates atdifferent values, depending on th
initial bubble size. These equilibria are approached b
from above and from below. Details will be publishe
elsewhere [19].

We now outline the predictions of these calculations
experiments. A common protocol in the SL experimen
[1,3] is to slowly increase the driving pressurePa. The
initial ambient radius depends on the preparation of
bubble. At low pressures the bubble shrinks, sincec` ,

kclt . As the forcing pressure is increased, there is
critical pressure where equilibrium points (both stable a
unstable) appear in the parametrically stable region [2
calculations forc`yc0 ­ 0.25 indicate this occurs nea
1 atm. Above this forcing pressure, the bubble can follo

FIG. 1. kpltyP0 as a function ofR0 (in mm) for Pa ­ 0.8,
0.9, 1, 1.1, 1.2, and1.25 atm, top to bottom. Equilibrium cor-
responds tokpltyP0 ­ c`yc0. The equilibrium is diffusively
stable if the slopeb ­ dkpltydR0 is positive. Inset: An en-
largement ofPa ­ 1.25 atm. The straight line corresponds t
c`yc0 ­ 1022. The intersection of the straight line with th
curve corresponds to equilibrium points. Whenb . 0 (the
solid dots in the figure) the equilibrium is stable.
1159
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three different scenarios, depending on its ambient ra
R0: (a) If R0 is smaller than all equilibrium radii, the
bubble shrinks. (b) IfR0 is near a stable equilibrium
the bubble is attracted to it and thus maintains a cons
ambient radius thereafter. (c) IfR0 is larger than all the
equilibrium radii, the bubble grows by rectified diffusio
The particular scenario that occurs depends on the in
R0 and so could vary from experiment to experime
Also note that the system is hysteretic: the sequence
states occurring when the forcing pressure increases
not, in general, be repeated when the forcing press
decreases. In the experiments of Barberet al. [3], the
bubble initially follows (c), growing by rectified diffusion
When the ambient radius becomes large the bubbl
parametrically unstable; the bubble can decrease its ra
by pinching off a microbubble. As the forcing pressu
is further increased, the bubble continues diffusive grow
followed by microbubble pinchoff; the ambient radius
thus controlled by the parametric instability line [13
Eventually, for even largerPa, microbubble pinchoff is
severe enough to place the ambient radius near a s
equilibrium, after which the bubble follows scenario (b
Note that this transition from a “jiggling” bubble to a stab
bubble should always be accompanied by a discontinu
jump in the ambient radius. Such jumps are obser
by Barberet al. [3] for air bubbles near the onset of SL
Forc`yc0 ­ 0.25 the stable state persists untilPa ø 1.15;
abovePa ­ 1.15 within the simple model the equilibrium
point destabilizes. The bubble must return to diffus
growth followed by microbubble pinching to survive. A
even largerPa all parametrically stable bubbles shrink, s
the continued existence of a stable bubble is impossi
The sequence of events predicted by the simplified mo
is qualitatively similar to those in the SL experiments.

The stable equilibrium points are ultimately due
oscillations inkplt as a function ofR0, which arise from
resonances in the Rayleigh-Plesset equation. Oscillat
even occur in the maximum radius as a function ofR0,
so that in some situations adding more gas to a bub
decreases its maximum size. A comparison with
Mathieu equation is instructive: If the eigenfrequency
the RP equation this depends onR0) is an integer or half
integer fraction of the forcing frequency, the amplitude
the oscillations is anomalously large. A detailed study
in progress [19].

Quantitative agreement between the simple mo
and the SL experiments requires accounting for sev
neglected effects. These include realistic heat tran
[6,21,22] and equations of state for the gas [23], as w
as spatial variations of the pressure within the bub
[23,24]. To illustrate the dependence of solutions of
RP equation on material parameters, consider a3.3 mm
bubble at forcing pressurePa ­ 1.3 atm. Upon changing
g ­ 1 (isothermal) tog ­ 1.4 (adiabatic) the maximum
radiusRmax changes by 20%; setting the surface tens
to zero changesRmax by 50%; changing the fluid viscosit
1160
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from water to 0.07 cm2ysec changesRmax by 30%.
Increasing the forcing pressure by 0.05 atm (the error
experiments [3]) increasesRmax by 20%. The uncertainty
in the effective values of all the aforementioned quantiti
during SL translates into uncertainties in predicted po
tions for the stable equilibria. However, our qualitativ
conclusions are robust, occurring throughout the releva
range of parameter space.

Multiple stable equilibria exist for a range of forcing
pressures for anyc`yc0 ø 1; although these states gen
erally occur at high forcing, the bubble oscillations nee
not be strong enough to produce light [25]. What param
ter regime corresponds to SL in the simplified model? N
established criterion exists, though experiments [3,26] su
gest that the collapse ratioRmaxyR0 is the relevant parame-
ter. Forc`yc0 ­ 0.2, the stable equilibria have collapse
ratios RmaxyR0 ø 3; for c`yc0 ­ 0.004, RmaxyR0 ø 7.
The formerc`yc0 corresponds to the strongest SL for a
bubbles; the latter corresponds to the new phase (i.e.,
low c` phase) of SL recently discovered [5] for argon bub
bles. The largest discrepancy between this simple mo
and SL experiments is its inability to explain why th
strongest light emission occurs at a much largerc`yc0 in
air bubbles than argon bubbles.

This discrepancy is the basic reason for Löfstadtet al.’s
speculation that “nondiffusive” effects may be necessa
to explain stable SL in air. We have verified throug
dynamical calculations that a simple nondiffusive effe
can stabilize an otherwise unstable equilibrium point [27
the increase of the mass diffusion constant [D in Eq. (3)]
with temperature and pressure. When the bubble press
and temperature is high, the diffusion constant near t
bubble wall islarger than the diffusion constant in the bulk
liquid, leading to additional mass outflux from the bubble

This increase in the interfacial diffusion constant can b
studied with a simple model: Whenever the pressure
side the bubble exceeds a critical pressurepthres we discon-
tinuously increase the diffusion constant near the bubb
wall by a factorfthres. The diffusion constant in the bulk
liquid remains constant, since high pressures and tempe
tures are localized near the bubble wall. Numerical sim
lations of the full equations [19] with and without this
effect demonstrate that the unstable equilibrium point c
be stabilized for a wide range ofpthres andfthres. The po-
sition of the equilibrium point is shifted to larger radii, a
predicted by Löfstadtet al. [7].

A central question for both theory and experiment
determining the parameter ranges where diffusive effe
alone produce a stable bubble. The present results sug
that the qualitative features of the bubble dynamics
SL experiments also arise within classical theories
bubble dynamics. Answering definitively whether nove
effects are needed to explain stable SL is complicated
modeling uncertainties. The present calculations provi
qualitative criteria to assist in answering this questio
although both diffusive and nondiffusive effects can lead
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stable equilibria, only the diffusive effects lead to discre
equilibria. In order to determine which effect dominat
the SL experiments, we suggest that experiments se
for the discretization of the ambient radius in both lig
emitting and nonlight emitting bubbles.

We thank S. Grossmann, S. Hilgenfeldt, and L. Kada
off for helpful discussions. This work has been suppor
by the DOE, the MRSEC Program of the National Scien
Foundation at the University of Chicago, and the DF
through SFB 185.

Note added.—During the review process, we becam
aware of a conference proceeding [28] by Crum a
Cordry who reached similar conclusions about the e
istence and possible importance of multiple stable eq
librium points. These authors also presented prelimin
experimental evidence for the discrete equilibria.
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