In the final few years of his life, Julian Schwinger proposed that the
``dynamical Casimir effect'' might provide the driving force behind the
puzzling phenomenon of sonoluminescence. Motivated by that exciting suggestion,
we have computed the static Casimir energy of a spherical cavity in an
otherwise uniform material. As expected the result is divergent; yet a
plausible finite answer is extracted, in the leading uniform asymptotic
approximation. This result agrees with that found using zeta-function
regularization. Numerically, we find far too small an energy to account for the
large burst of photons seen in sonoluminescence. If the divergent result is
retained, it is of the wrong sign to drive the effect. Dispersion does not
resolve this contradiction. In the static approximation, the Fresnel drag term
is zero; on the mother hand, electrostriction could be comparable to the
Casimir term. It is argued that this adiabatic approximation to the dynamical
Casimir effect should be quite accurate.Comment: 23 pages, no figures, REVTe