783 research outputs found

    Nanosecond laser texturing of aluminium for control of wettability

    Get PDF
    There is increasing interest in the use of lasers to modify the wettability of surfaces. Here we report on the use of a 20W nS pulsed IR fibre laser to create strong ydrophobicity on the surface of aluminium sheets. This is unexpected, hydrophobicity is usually associated solely with femto- or pico- second laser processing. At a 20W average power level the area coverage rate is too small for many industrial applications. Further trials using a 800W DPSS laser are described and the ability of this system to change surface wettability at a much higher production rate are indicated. There is little reported literature on surface texturing at higher average power levels. Indications of the productivity, or surface coverage rate, are given. Keywords: Fibre lasers, DPSS lasers, Surface Engineering, texturing, wettability, aluminiu

    A Voltage-Dependent Persistent Sodium Current in Mammalian Hippocampal-Neurons

    Get PDF
    ABSTRACT Currents generated by depolarizing voltage pulses were recorded in neurons from the pyramidal cell layer of the CA1 region of rat or guinea pig hip-pocampus with single electrode voltage-clamp or tight-seal whole-cell voltage-clamp techniques. In neurons in situ in slices, and in dissociated neurons, subtrac-tion of currents generated by identical depolarizing voltage pulses before and after exposure to tetrodotoxin revealed a small, persistent current after the transient current. These currents could also be recorded directly in dissociated neurons in which other ionic currents were effectively suppressed. It was concluded that the persistent current was carded by sodium ions because it was blocked by TIX, decreased in amplitude when extraceUular sodium concentration was reduced, and was not blocked by cadmium. The amplitude of the persistent sodium current var-ied with clamp potential, being detectable at potentials as negative as- 70 mV and reaching a maximum at ~-40 mV. The maximum amplitude at-40 mV in 21 cells in slices was-0.34 0.05 nA (mean 1 SEM) and-0.21 0.05 nA in 10 dissociated neurons. Persistent sodium conductance increased sigmoidally with

    Laser Induced Micro Plasma Processing of Polymer Substrates for Biomedical Implant Applications

    Get PDF
    This paper reports the experimental results of a new hybrid laser processing technique; Laser Induced Micro Plasma Processing (LIMP2). A transparent substrate is placed on top of a medium that will interact with the laser beam and create a plasma. The plasma and laser beam act in unison to ablate material and create micro-structuring on the “backside” of the substrate. We report the results of a series of experiments on a new laser processing technique that will use the same laser-plasma interaction to micromachining structures into glass and polymer substrates on the “topside” of the substrate and hence machine non-transparent material. This new laser processing technique is called Laser Induced Micro Plasma Processing (LIMP2). Micromachining of biomedical implants is proving an important enabling technology in controlling cell growth on a macro-scale. This paper discusses LIMP2 structuring of transparent substrate such as glasses and polymers for this application. Direct machining of these materials by lasers in the near infrared is at present impossible. Laser Induced Micro Plasma Processing (LIMP2) is a technique that allows laser operating at 1064 nm to machine microstructures directly these transparent substrates. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Machine grinding as an alternative method for creating functional surfaces for controlling cell behaviour

    Get PDF
    There is extensive evidence to show that certain cellular behaviours including cell proliferation, migration and adhesion can be controlled by culturing cells on surfaces containing different micro-metre- and nanometre-scale features. This paper will introduce the use of machine grinding to generate surfaces with micro-sized features and their ability to affect cell behaviour. Results are presented which show that polyurethane castings of the ground surfaces can promote cell adhesion and migration. This study demonstrates the usefulness of surface grinding as a cost-effective method for generating functional surfaces for modifying cell behaviour

    Carbon nanoparticles fabricated by infrared laser ablation of graphite and polycrystalline diamond targets

    Get PDF
    This paper presents the results of carbon nanoparticles (CNPs) production by infrared laser ablation of a graphite or a polycrystalline diamond target, submerged in one of two solvents, water or isopropanol. The targets were irradiated using a SPI fibre laser with a wavelength of 1064nm being operated at different average powers. After laser-assisted synthesis of CNPs, the resulting colloids, i.e particles in a liquid medium, were examined using the analytical techniques of dynamic light scattering, UV-Vis, Raman spectroscopy and fluorescence spectroscopy. The results show that the properties of CNPs strongly depend on processing conditions of the liquid phase-pulsed laser ablation (LP-PLA) process. In particular, the size of nanoparticles produced are affected by the processing parameters of the laser ablation. The results show that the laser processing of a graphite target in deionised water and in isopropanol produces carbon nanoparticles with properties that are beneficial for various biochemical and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    The use of abrasive polishing and laser processing for developing polyurethane surfaces for controlling fibroblast cell behaviour

    Get PDF
    Studies have shown that surfaces having micro and nano-scale features can be used to control cell behaviours including; cell proliferation, migration and adhesion. The aim of this work was to compare the use of laser processing and abrasive polishing to develop micro/nano-patterned polyurethane substrates for controlling fibroblast cell adhesion, migration and proliferation. Laser processing in a directional manner resulted in polyurethane surfaces having a ploughed field effect with micron-scale features. In contrast, abrasive polishing in a directional and random manner resulted in polyurethane surfaces having sub-micron scale features orientated in a linear or random manner. Results show that when compared with flat (non-patterned) polymer, both the laser processed and abrasive polished surface having randomly organised features, promoted significantly greater cell adhesion, while also enhancing cell proliferation after 72 h. In contrast, the abrasive polished surface having linear features did not enhance cell adhesion or proliferation when compared to the flat surface. For cell migration, the cells growing on the laser processed and abrasively polished random surface showed decreased levels of migration when compared to the flat surface. This study shows that both abrasive polishing and laser processing can be used to produce surfaces having features on the nano-scale and micron-scale, respectively. Surfaces produced using both techniques can be used to promote fibroblast cell adhesion and proliferation. Thus both methods offer a viable alternative to using lithographic techniques for developing patterned surfaces. In particular, abrasive polishing is an attractive method due to it being a simple, rapid and inexpensive method that can be used to produce surfaces having features on a comparable scale to more expensive, multi-step methods

    Phytochemicals as antibiotic alternatives to promote growth and enhance host health

    Get PDF
    There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin

    Cost-effectiveness of a structured progressive task-oriented circuit class training programme to enhance walking competency after stroke: The protocol of the FIT-Stroke trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most patients who suffer a stroke experience reduced walking competency and health-related quality of life (HRQoL). A key factor in effective stroke rehabilitation is intensive, task-specific training. Recent studies suggest that intensive, patient-tailored training can be organized as a circuit with a series of task-oriented workstations.</p> <p>Primary aim of the FIT-Stroke trial is to evaluate the effects and cost-effectiveness of a structured, progressive task-oriented circuit class training (CCT) programme, compared to usual physiotherapeutic care during outpatient rehabilitation in a rehabilitation centre. The task-oriented CCT will be applied in groups of 4 to 6 patients. Outcome will be defined in terms of gait and gait-related ADLs after stroke. The trial will also investigate the generalizability of treatment effects of task-oriented CCT in terms of perceived fatigue, anxiety, depression and perceived HRQoL.</p> <p>Methods/design</p> <p>The multicentre single-blinded randomized trial will include 220 stroke patients discharged to the community from inpatient rehabilitation, who are able to communicate and walk at least 10 m without physical, hands-on assistance. After discharge from inpatient rehabilitation, patients in the experimental group will receive task-oriented CCT two times a week for 12 weeks at the physiotherapy department of the rehabilitation centre. Control group patients will receive usual individual, face-to-face, physiotherapy. Costs will be evaluated by having each patient keep a cost diary for the first 24 weeks after randomisation. Primary outcomes are the mobility part of the Stroke Impact Scale (SIS-3.0) and the EuroQol. Secondary outcomes are the other domains of SIS-3.0, lower limb muscle strength, walking endurance, gait speed, balance, confidence not to fall, instrumental ADL, fatigue, anxiety, depression and HRQoL.</p> <p>Discussion</p> <p>Based on assumptions about the effect of intensity of practice and specificity of treatment effects, FIT-Stroke will address two key aims. The first aim is to investigate the effects of task-oriented CCT on walking competency and HRQoL compared to usual face-to-face physiotherapy. The second aim is to reveal the cost-effectiveness of task-oriented CCT in the first 6 months post stroke. Both aims were recently recommended as priorities by the American Hearth Association and Stroke Council.</p> <p>Trial registration</p> <p>This study is registered in the Dutch Trial Register as NTR1534.</p
    • …
    corecore