494 research outputs found

    Flat-H Redundant Frangible Joint Design Evolution 2018: Feasibility Study Conclusions

    Get PDF
    This paper reports results of an investigation into developing a single failure tolerant pyrotechnic linear separation system which features completely redundant explosive trains suitable for human spaceflight. It is a follow up to Flat-H Redundant Frangible Joint Design Evolution 2017 and Flat-H Redundant Frangible Joint Evolution. The paper chronicles the history of the redundant frangible joint development program including testing, analysis, and design improvements from 2014 to the present culminating in a successful proof-of-concept prototype. The paper describes work done to address debris control and containment of combustion products. A performance optimization strategy is presented along with optimization results. Additionally a novel containment manifold design is presented with test results

    Androgen-dependent Protein Interactions within an Intron 1 Regulatory Region of the 20-kDa Protein Gene

    Get PDF
    The 20-kDa protein gene is androgen regulated in rat ventral prostate. Intron 1 contains a 130-base pair complex response element (D2) that binds androgen (AR) and glucocorticoid receptor (GR) but transactivates only with AR in transient cotransfection assays in CV1 cells using the reporter vector D2-tkCAT. To better understand the function of this androgen-responsive unit, nuclear protein interactions with D2 were analyzed by DNase I footprinting in ventral prostate nuclei of intact or castrated rats and in vitro with ventral prostate nuclear protein extracts from intact, castrated, and testosterone-treated castrated rats. Multiple androgen-dependent protected regions and hypersensitive sites were identified in the D2 region with both methods. Mobility shift assays with 32P-labeled oligonucleotides spanning D2 revealed specific interactions with ventral prostate nuclear proteins. Four of the D2-protein complexes decreased in intensity within 24 h of castration. UV cross-linking of the androgen-dependent DNA binding proteins identified protein complexes of approximately 140 and 55 kDa. The results demonstrate androgen-dependent nuclear protein-DNA interactions within the complex androgen response element D2

    Detecting Stress in Glasshouse Plants Using Color Infrared Imagery: A Potential New Application for Remote Sensing

    Get PDF
    English: Studies were conducted to evaluate the effectiveness of color infrared (CIR) film for detecting physiological stress in plants located within glasshouse structures. Spectroradiometer measurements obtained within and outside of a structure constructed of polycarbonate plastic indicated no significant attenuation or disruption of visible and near-infrared radiation entering the structure. CIR photographs of cucumber seedlings (Cucumis sativus) obtained within the greenhouse were comparable in quality to those obtained outside the structure, and clearly distinguished between foliage of healthy plants and those subjected to a moderate level of nitrogen stress. In CIR imagery of a trifoliate orange tree (Poncirus trifoliata (L.) Raf.) obtained within a greenhouse constructed of yellow fiberglass panels, leaves damaged by citrus red mites (Panonychus citri [McGregor]) were distinguishable from healthy foliage, and the distribution of damaged leaves on the tree itself was clearly evident. These results suggest that remote sensing techniques which have been used successfully to monitor conventional field crops are readily extendable to the commercial glasshouse environment with certain modifications. Spanish: Se condujeron estudios para evaluar la eficacia de la película infrarroja de color (CIR) para detectar el estrés fisiológico en las plantas situadas dentro de un invernadero. Las mediciones del spectroradiómetro obtenidas dentro y fuera de un invernadero construido con plástico de policarbonato no indicaron ninguna atenuación o interrupción significativa de la radiación visible y del cercano infrarrojo que penetraba al invernadero. Las fotografías con CIR de las plantas de semillero de pepino (Cucumis sativus) obtenidas dentro del invernadero fueron comparables en calidad a aquellas obtenidas fuera de este, y distinguieron claramente entre el follaje de plantas sanas y de aquellas sometidas a un nivel moderado de estrés de nitrógeno. En imágenes de CIR de un naranjo trifoliado (Poncirus trifoliata (L.) Raf.) obtenidas dentro de un invernadero construido de paneles amarillos de fibra de vidrio, las hojas dañadas por el ácaro rojo de los cítricos (Panonychus citri [McGregor]) se distinguieron del follaje sano, y la distribución de hojas dañadas en el árbol mismo fueron claramente evidentes. Estos resultados sugieren que las técnicas de detección a distancia que se han utilizado con éxito para supervisar campos de cultivo convencionales, también pueden usarse fácilmente, con algunas modificaciones, en cultivos comerciales en invernadero

    Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance

    Get PDF
    The acquisition of language and speech is uniquely human, but how genetic changes might have adapted the nervous system to this capacity is not well understood. Two human-specific amino acid substitutions in the transcription factor forkhead box P2 (FOXP2) are outstanding mechanistic candidates, as they could have been positively selected during human evolution and as FOXP2 is the sole gene to date firmly linked to speech and language development. When these two substitutions are introduced into the endogenous Foxp2 gene of mice (Foxp2[superscript hum]), cortico-basal ganglia circuits are specifically affected. Here we demonstrate marked effects of this humanization of Foxp2 on learning and striatal neuroplasticity. Foxp2[superscript hum/hum] mice learn stimulus–response associations faster than their WT littermates in situations in which declarative (i.e., place-based) and procedural (i.e., response-based) forms of learning could compete during transitions toward proceduralization of action sequences. Striatal districts known to be differently related to these two modes of learning are affected differently in the Foxp2[superscript hum/hum] mice, as judged by measures of dopamine levels, gene expression patterns, and synaptic plasticity, including an NMDA receptor-dependent form of long-term depression. These findings raise the possibility that the humanized Foxp2 phenotype reflects a different tuning of corticostriatal systems involved in declarative and procedural learning, a capacity potentially contributing to adapting the human brain for speech and language acquisition.Nancy Lurie Marks Family FoundationSimons Foundation (Autism Research Initiative Grant 137593)National Institutes of Health (U.S.) (Grant R01 MH060379)Wellcome Trust (London, England) (Grant 075491/Z/04)Wellcome Trust (London, England) (Grant 080971)Fondation pour la recherche medicaleMax Planck Society for the Advancement of Scienc

    Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS

    Full text link
    We present the discovery and early evolution of ASASSN-19bt, a tidal disruption event (TDE) discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of d115d\simeq115 Mpc and the first TDE to be detected by TESS. As the TDE is located in the TESS Continuous Viewing Zone, our dataset includes 30-minute cadence observations starting on 2018 July 25, and we precisely measure that the TDE begins to brighten 8.3\sim8.3 days before its discovery. Our dataset also includes 18 epochs of Swift UVOT and XRT observations, 2 epochs of XMM-Newton observations, 13 spectroscopic observations, and ground data from the Las Cumbres Observatory telescope network, spanning from 32 days before peak through 37 days after peak. ASASSN-19bt thus has the most detailed pre-peak dataset for any TDE. The TESS light curve indicates that the transient began to brighten on 2019 January 21.6 and that for the first 15 days its rise was consistent with a flux t2\propto t^2 power-law model. The optical/UV emission is well-fit by a blackbody SED, and ASASSN-19bt exhibits an early spike in its luminosity and temperature roughly 32 rest-frame days before peak and spanning up to 14 days that has not been seen in other TDEs, possibly because UV observations were not triggered early enough to detect it. It peaked on 2019 March 04.9 at a luminosity of L1.3×1044L\simeq1.3\times10^{44} ergs s1^{-1} and radiated E3.2×1050E\simeq3.2\times10^{50} ergs during the 41-day rise to peak. X-ray observations after peak indicate a softening of the hard X-ray emission prior to peak, reminiscent of the hard/soft states in X-ray binaries.Comment: 23 pages, 14 figures, 5 tables. A machine-readable table containing the host-subtracted photometry presented in this manuscript is included as an ancillary fil

    Large-Scale Atomistic Simulations of Environmental Effects on the Formation and Properties of Molecular Junctions

    Full text link
    Using an updated simulation tool, we examine molecular junctions comprised of benzene-1,4-dithiolate bonded between gold nanotips, focusing on the importance of environmental factors and inter-electrode distance on the formation and structure of bridged molecules. We investigate the complex relationship between monolayer density and tip separation, finding that the formation of multi-molecule junctions is favored at low monolayer density, while single-molecule junctions are favored at high density. We demonstrate that tip geometry and monolayer interactions, two factors that are often neglected in simulation, affect the bonding geometry and tilt angle of bridged molecules. We further show that the structures of bridged molecules at 298 and 77 K are similar.Comment: To appear in ACS Nano, 30 pages, 5 figure

    Epidermal Growth Factor Increases Coactivation of the Androgen Receptor in Recurrent Prostate Cancer

    Get PDF
    Growth of normal and neoplastic prostate is mediated by the androgen receptor (AR), a ligand-dependent transcription factor activated by high affinity androgen binding. The AR is highly expressed in recurrent prostate cancer cells that proliferate despite reduced circulating androgen. In this report, we show that epidermal growth factor (EGF) increases androgen-dependent AR transactivation in the recurrent prostate cancer cell line CWR-R1 through a mechanism that involves a post-transcriptional increase in the p160 coactivator transcriptional intermediary factor 2/glucocorticoid receptor interacting protein 1 (TIF2/GRIP1). Site-specific mutagenesis and selective MAPK inhibitors linked the EGF-induced increase in AR transactivation to phosphorylation of TIF2/GRIP1. EGF signaling increased the coimmunoprecipitation of TIF2 and AR. AR transactivation and its stimulation by EGF were reduced by small interfering RNA inhibition of TIF2/GRIP1 expression. The data indicate that EGF signaling through MAPK increases TIF2/GRIP1 coactivation of AR transactivation in recurrent prostate cancer

    Application of ultrafast gold luminescence to measuring the instrument response function for multispectral multiphoton fluorescence lifetime imaging

    Get PDF
    When performing multiphoton fluorescence lifetime imaging in multiple spectral emission channels, an instrument response function must be acquired in each channel if accurate measurements of complex fluorescence decays are to be performed. Although this can be achieved using the reference reconvolution technique, it is difficult to identify suitable fluorophores with a mono-exponential fluorescence decay across a broad emission spectrum. We present a solution to this problem by measuring the IRF using the ultrafast luminescence from gold nanorods. We show that ultrafast gold nanorod luminescence allows the IRF to be directly obtained in multiple spectral channels simultaneously across a wide spectral range. We validate this approach by presenting an analysis of multispectral autofluorescence FLIM data obtained from human skin ex vivo

    Synthetic biology and biomass conversion: a match made in heaven?

    Get PDF
    To move our economy onto a sustainable basis, it is essential that we find a replacement for fossil carbon as a source of liquid fuels and chemical industry feedstocks. Lignocellulosic biomass, available in enormous quantities, is the only feasible replacement. Many micro-organisms are capable of rapid and efficient degradation of biomass, employing a battery of specialized enzymes, but do not produce useful products. Attempts to transfer biomass-degrading capability to industrially useful organisms by heterologous expression of one or a few biomass-degrading enzymes have met with limited success. It seems probable that an effective biomass-degradation system requires the synergistic action of a large number of enzymes, the individual and collective actions of which are poorly understood. By offering the ability to combine any number of transgenes in a modular, combinatorial way, synthetic biology offers a new approach to elucidating the synergistic action of combinations of biomass-degrading enzymes in vivo and may ultimately lead to a transferable biomass-degradation system. Also, synthetic biology offers the potential for assembly of novel product-formation pathways, as well as mechanisms for increased solvent tolerance. Thus, synthetic biology may finally lead to cheap and effective processes for conversion of biomass to useful products
    corecore