137 research outputs found

    DECISION SUPPORT FOR SELECTING AN APPLICATION LANDSCAPE INTEGRATION STRATEGY IN MERGERS AND ACQUISITIONS

    Get PDF
    Mergers and Acquisitions (M&A) represent a powerful strategic instrument increasingly applied in today\u27s business environment. Besides juridical, financial, and organizational challenges, it is crucial to rapidly integrate the existing application landscapes in order to capitalize the aspired synergies. Literature documents four commonly agreed strategies: \u27best-of-breed\u27, \u27absorption\u27, \u27co-existence\u27, and \u27new-build\u27. However, no consolidated set of criteria exists to ease the selection of an integration strategy most suitable for the merger or the acquisition. Based on the results of a literature study, this paper proposes four integration profiles enabling a structured decision support for selecting the appropriate application landscape strategy during M&A. Each profile comprises relevant driving factors and resulting consequences as selection criteria. The identified literature statements regarding the criteria are validated by means of 12 confirmatory interviews with M&A experts. Furthermore, collected findings from an additional exploratory interview part with the practitioners complement the devised strategy profiles

    Serum Biochemical Profile of Captive-Bred Philippine Crocodiles (Crocodylus Mindorensis Schmidt, 1935) Sub-adults

    Get PDF
    The Philippine crocodiles Crocodylus mindorensis Schmidt; 1935 are a critically endangered species that necessitate minimally invasive diagnostic tools for their physiological state and health assessment. In the current study; we determined the reference ranges for the serum biochemistry of male and female captive-bred C. mindorensis sub-adults. We collected blood samples from the post-occipital venous sinus of six male and seven female captive-bred crocodile sub-adults at the Palawan Wildlife Rescue and Conservation Center and quantified the serum biochemical values for cholesterol; triglycerides; uric acid; glucose; creatinine; aspartate aminotransferase (AST); alanine aminotransferase (ALT); albumin; total protein; and globulin. We defined reference ranges through the central 95% of the concentration values obtained. The uric acid concentrations were significantly different between male and female C. mindorensis sub-adults. Uric acid levels were higher (P = 0.035) in male sub-adults because of their higher food intake resulting from dominance and aggression during feeding times. Serum biochemical values of C. mindorensis exhibited similarities with and variations from other crocodile species. We briefly discussed the differences with other species and the influence of factors such as field and laboratory methodologies; environmental conditions; nutritional status; and size class

    Managing hospital visitor admission during Covid-19: A discrete-event simulation by the data of a German University Hospital

    Get PDF
    The Corona pandemic and the associated need for visitor restrictions have defined an entirely new management task in hospitals: The hospital visitor management. The admission process of hospital visitors and the implementation of associated infection-prevention strategies such as the delivery of face masks thereby pose major challenges. In this work, we evaluate both implemented and planned admission processes in a German University Hospital based on a discrete-event simulation model and provide distinct recommendations for hospital visitor management with special consideration of digitalization, antigen testing, waiting times, space and staff utilization. We find the extraordinary potential of digitalization with a reduction of visitor waiting and service times of up to 90 percent, the significant burden for personnel and room capacity, in terms of antigen testing, especially, and the need for visitor restrictions in terms of a maximum number of visitors per inpatient

    Secular Stellar Dynamics near a Massive Black Hole

    Full text link
    The angular momentum evolution of stars close to massive black holes (MBHs) is driven by secular torques. In contrast to two-body relaxation, where interactions between stars are incoherent, the resulting resonant relaxation (RR) process is characterized by coherence times of hundreds of orbital periods. In this paper, we show that all the statistical properties of RR can be reproduced in an autoregressive moving average (ARMA) model. We use the ARMA model, calibrated with extensive N-body simulations, to analyze the long-term evolution of stellar systems around MBHs with Monte Carlo simulations. We show that for a single-mass system in steady-state, a depression is carved out near an MBH as a result of tidal disruptions. Using Galactic center parameters, the extent of the depression is about 0.1 pc, of similar order to but less than the size of the observed "hole" in the distribution of bright late-type stars. We also find that the velocity vectors of stars around an MBH are locally not isotropic. In a second application, we evolve the highly eccentric orbits that result from the tidal disruption of binary stars, which are considered to be plausible precursors of the "S-stars" in the Galactic center. We find that RR predicts more highly eccentric (e > 0.9) S-star orbits than have been observed to date.Comment: 24 pages, 31 figures; final version as published in Ap

    Evaluating STAT5 Phosphorylation as a Mean to Assess T Cell Proliferation

    Get PDF
    Here we present a simple and sensitive flow cytometric—based assay to assess T cell proliferation. Given the critical role STAT5A phosphorylation in T cell proliferation, we decided to evaluate phosphorylation of STAT5A as an indicator of T cell proliferation. We determined pSTAT5A in T cell treated with either CD3/CD28 or PHA. After stimulation, T cells from adult healthy donors displayed a strong long-lasting phosphorylation of STAT5A, reaching a peak value after 24 h. The median fluorescence intensity (MFI) of pSTAT5A increased from 112 ± 17 to 512 ± 278 (CD3/CD28) (24 h) and to 413 ± 123 (PHA) (24 h), the IL-2 receptor-α (CD25) expression was greatly enhanced and after 72 h T cell proliferation amounted to 52.3 ± 10.3% (CD3/CD28) and to 48.4 ± 9.7% (PHA). Treatment with specific JAK3 and STAT5 inhibitors resulted in a complete blockage of phosphorylation of STAT5A, CD25 expression, and suppression of T cell proliferation. Compared with currently available methods, STAT5A phosphorylation is well-suited to predict T cell proliferation. Moreover, the method presented here is not very time consuming (several hours) and delivers functional information from which conclusions about T cell proliferation can be drawn

    ENIGMA-anxiety working group : rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    Retrieval of snow properties from the Sentinel-3 Ocean and Land Colour Instrument

    Get PDF
    The Sentinel Application Platform (SNAP) architecture facilitates Earth Observation data processing. In this work, we present results from a new Snow Processor for SNAP. We also describe physical principles behind the developed snow property retrieval technique based on the analysis of Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A/B measurements over clean and polluted snow fields. Using OLCI spectral reflectance measurements in the range 400–1020 nm, we derived important snow properties such as spectral and broadband albedo, snow specific surface area, snow extent and grain size on a spatial grid of 300 m. The algorithm also incorporated cloud screening and atmospheric correction procedures over snow surfaces. We present validation results using ground measurements from Antarctica, the Greenland ice sheet and the French Alps. We find the spectral albedo retrieved with accuracy of better than 3% on average, making our retrievals sufficient for a variety of applications. Broadband albedo is retrieved with the average accuracy of about 5% over snow. Therefore, the uncertainties of satellite retrievals are close to experimental errors of ground measurements. The retrieved surface grain size shows good agreement with ground observations. Snow specific surface area observations are also consistent with our OLCI retrievals. We present snow albedo and grain size mapping over the inland ice sheet of Greenland for areas including dry snow, melted/melting snow and impurity rich bare ice. The algorithm can be applied to OLCI Sentinel-3 measurements providing an opportunity for creation of long-term snow property records essential for climate monitoring and data assimilation studies—especially in the Arctic region, where we face rapid environmental changes including reduction of snow/ice extent and, therefore, planetary albedo.publishedVersio

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Variations of the Candidate SEZ6L2 Gene on Chromosome 16p11.2 in Patients with Autism Spectrum Disorders and in Human Populations

    Get PDF
    Background: Autism spectrum disorders (ASD) are a group of severe childhood neurodevelopmental disorders with still unknown etiology. One of the most frequently reported associations is the presence of recurrent de novo or inherited microdeletions and microduplications on chromosome 16p11.2. The analysis of rare variations of 8 candidate genes among the 27 genes located in this region suggested SEZ6L2 as a compelling candidate. Methodology/Principal Findings: We further explored the role of SEZ6L2 variations by screening its coding part in a group of 452 individuals, including 170 patients with ASD and 282 individuals from different ethnic backgrounds of the Human Genome Diversity Panel (HGDP), complementing the previously reported screening. We detected 7 previously unidentified non-synonymous variations of SEZ6L2 in ASD patients. We also identified 6 non-synonymous variations present only in HGDP. When we merged our results with the previously published, no enrichment of non-synonymous variation in SEZ6L2 was observed in the ASD group compared with controls. Conclusions/Significance: Our results provide an extensive ascertainment of the genetic variability of SEZ6L2 in human populations and do not support a major role for SEZ6L2 sequence variations in the susceptibility to ASD

    Spindle Assembly Checkpoint Protein Dynamics Reveal Conserved and Unsuspected Roles in Plant Cell Division

    Get PDF
    Background: In eukaryotes, the spindle assembly checkpoint (SAC) ensures that chromosomes undergoing mitosis do not segregate until they are properly attached to the microtubules of the spindle. Methodology/Principal Findings: We investigated the mechanism underlying this surveillance mechanism in plants, by characterising the orthogolous SAC proteins BUBR1, BUB3 and MAD2 from Arabidopsis. We showed that the cell cycle-regulated BUBR1, BUB3.1 and MAD2 proteins interacted physically with each other. Furthermore, BUBR1 and MAD2 interacted specifically at chromocenters. Following SAC activation by global defects in spindle assembly, these three interacting partners localised to unattached kinetochores. In addition, in cases of 'wait anaphase', plant SAC proteins were associated with both kinetochores and kinetochore microtubules. Unexpectedly, BUB3.1 was also found in the phragmoplast midline during the final step of cell division in plants. Conclusions/Significance: We conclude that plant BUBR1, BUB3.1 and MAD2 proteins may have the SAC protein functions conserved from yeast to humans. The association of BUB3.1 with both unattached kinetochore and phragmoplast suggests that in plant, BUB3.1 may have other roles beyond the spindle assembly checkpoint itself. Finally, this study of the SAC dynamics pinpoints uncharacterised roles of this surveillance mechanism in plant cell division
    corecore