118 research outputs found

    Perceptions of primary healthcare professionals towards their role in type 2 diabetes mellitus patient education in Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the current study was to analyze the perceptions, knowledge, and practices of primary healthcare professionals in providing patient education to people with type 2 diabetes mellitus.</p> <p>Methods</p> <p>A total of 23 health professionals working in primary healthcare units in Belo Horizonte, Minas Gerais State, Brazil, participated in a focus group in order to discuss their patient education practices and the challenges for effective patient education in diabetes self-management.</p> <p>Results</p> <p>The results were categorized as follows: 1) lack of preparation and technical knowledge among the health professionals on some aspects of diabetes mellitus and the health professionals' patient education practices; 2) work conditions and organization; 3) issues related or attributed to the clientele themselves; and 4) diabetes care model.</p> <p>Conclusions</p> <p>This study highlights the importance of reorienting the patient education practices, health professionals' skills and work goals, and evaluation of the educational interventions, in order to establish strategies for health promotion and prevention and control of the disease.</p> <p>Descriptors</p> <p>Health Education; Prevention of Diabetes Mellitus; Primary Healthcare</p

    IL-17 Produced during Trypanosoma cruzi Infection Plays a Central Role in Regulating Parasite-Induced Myocarditis

    Get PDF
    Chagas disease is caused by the intracellular parasite Trypanosoma cruzi. This infection has been considered one of the most neglected diseases and affects several million people in the Central and South America. Around 30% of the infected patients develop digestive and cardiac forms of the disease. Most patients are diagnosed during the chronic phase, when the treatment is not effective. Here, we showed by the first time that IL-17 is produced during experimental T. cruzi infection and that it plays a significant role in host defense, modulating parasite-induced myocarditis. Applying this analysis to humans could be of great value in unraveling the elements involved in the pathogenesis of chagasic cardiopathy and could be used in the development of alternative therapies to reduce morbidity during the chronic phase of the disease, as well as clinical markers of disease progression. The understanding of these aspects of disease may be helpful in reducing the disability-adjusted life years (DALYs) and costs to the public health service in developing countries

    Aspirin Treatment of Mice Infected with Trypanosoma cruzi and Implications for the Pathogenesis of Chagas Disease

    Get PDF
    Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite- and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A2 and prostaglandin (PG)F2α. Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNFα reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the “cytokine storm” during acute infection. We conclude that ASA, through both COX inhibition and other “off-target” effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection

    Blood pro-resolving mediators are linked with synovial pathology and are predictive of DMARD responsiveness in rheumatoid arthritis.

    Get PDF
    Biomarkers are needed for predicting the effectiveness of disease modifying antirheumatic drugs (DMARDs). Here, using functional lipid mediator profiling and deeply phenotyped patients with early rheumatoid arthritis (RA), we observe that peripheral blood  specialized pro-resolving mediator (SPM) concentrations are linked with both DMARD responsiveness and disease pathotype. Machine learning analysis demonstrates that baseline plasma concentrations of resolvin D4, 10S, 17S-dihydroxy-docosapentaenoic acid, 15R-Lipoxin (LX)A4 and n-3 docosapentaenoic-derived Maresin 1 are predictive of DMARD responsiveness at 6 months. Assessment of circulating SPM concentrations 6-months after treatment initiation establishes that differences between responders and non-responders are maintained, with a decrease in SPM concentrations in patients resistant to DMARD therapy. These findings elucidate the potential utility of  plasma SPM concentrations as biomarkers of DMARD responsiveness in RA

    Genes from Chagas Susceptibility Loci That Are Differentially Expressed in T. cruzi-Resistant Mice Are Candidates Accounting for Impaired Immunity

    Get PDF
    Variation between inbred mice of susceptibility to experimental Trypanosoma cruzi infection has frequently been described, but the immunogenetic background is poorly understood. The outcross of the susceptible parental mouse strains C57BL/6 (B6) and DBA/2 (D2), B6D2F1 (F1) mice, is highly resistant to this parasite. In the present study we show by quantitative PCR that the increase of tissue parasitism during the early phase of infection is comparable up to day 11 between susceptible B6 and resistant F1 mice. A reduction of splenic parasite burdens occurs thereafter in both strains but is comparatively retarded in susceptible mice. Splenic microarchitecture is progressively disrupted with loss of follicles and B lymphocytes in B6 mice, but not in F1 mice. By genotyping of additional backcross offspring we corroborate our earlier findings that susceptibility maps to three loci on Chromosomes 5, 13 and 17. Analysis of gene expression of spleen cells from infected B6 and F1 mice with microarrays identifies about 0.3% of transcripts that are differentially expressed. Assuming that differential susceptibility is mediated by altered gene expression, we propose that the following differentially expressed transcripts from these loci are strong candidates for the observed phenotypic variation: H2-Eα, H2-D1, Ng23, Msh5 and Tubb5 from Chromosome 17; and Cxcl11, Bmp2k and Spp1 from Chromosome 5. Our results indicate that innate mechanisms are not of primary relevance to resistance of F1 mice to T. cruzi infection, and that differential susceptibility to experimental infection with this protozoan pathogen is not paralleled by extensive variation of the transcriptome

    Experimental infection parameters in Galea spixii (Rodentia: Caviidae) with Leishmania infantum chagasi

    Full text link
    In order to better understand the epidemiological transmission network of leishmaniasis, an endemic disease in Northeast Brazil, we investigated the susceptibility of Spix yellow-toothed cavies (Galea spixii) to the Leishmania infantum chagasi parasite. Nine cavies were experimentally infected, separated into three groups and monitored at 30, 90 and 180 days, respectively. Amastigotes were identified in the spleen slides of two cavies killed 180 days after infection. Antibodies against the L. i. chagasi were identified in one of the cavies. This demonstrates that G. spixii is in fact capable of maintaining a stable infection by L. i. chagasi without alterations in biochemical and hematological parameters of the host and without perceivable micro and macroscopic lesions
    corecore