115 research outputs found

    Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide

    Get PDF
    The hydrothermal carbonation of calcium hydroxide (Ca(OH)2) at high pressure of CO2 (initial PCO2 1/4 55 bar) and moderate to high temperature (30 and 90 1C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH)2-CaCO3 conversion), a significant production rate (48 kg/m3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperature and the dissolved quantity of CO2 have a significant effect on the average particle size, specific surface area, initial rate of precipitation, and on the morphology of calcium carbonate crystals. In contrast, these PTx conditions used herein have an insignificant effect on the carbonation efficiency of Ca(OH)2. Finally, the results presented here demonstrate that nano-calcite crystals with high specific surface area (SBET 1/4 6-10m2/g) can be produced, with a high potential for industrial applications such as adsorbents and/or filler in papermaking industry

    The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    Get PDF
    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase-difference spectra reveal a cutoff frequency near 3 mHz, up to which the oscillations are evanescent, while those with higher frequencies propagate upwards. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects

    An Inside Look at Sunspot Oscillations with Higher Azimuthal Wavenumbers

    Get PDF
    Solar chromospheric observations of sunspot umbrae offer an exceptional view of magneto-hydrodynamic wave phenomena. In recent years, a wealth of wave signatures related to propagating magneto-acoustic modes have been presented, which demonstrate complex spatial and temporal structuring of the wave components. Theoretical modelling has demonstrated how these ubiquitous waves are consistent with an m=0 slow magneto-acoustic mode, which are excited by trapped sub-photospheric acoustic (p-mode) waves. However, the spectrum of umbral waves is broad, suggesting that the observed signatures represent the superposition of numerous frequencies and/or modes. We apply Fourier filtering, in both spatial and temporal domains, to extract chromospheric umbral wave characteristics consistent with an m=1 slow magneto-acoustic mode. This identification has not been described before. Angular frequencies of 0.037 +/- 0.007 rad/s (2.1 +/- 0.4 deg/s), corresponding to a period approximately 170 s for the m=1 mode are uncovered for spatial wavenumbers in the range of 0.45<k<0.90 arcsec^-1 (5000-9000 km). Theoretical dispersion relations are solved, with corresponding eigenfunctions computed, which allows the density perturbations to be investigated and compared with our observations. Such magnetohydrodynamic modelling confirms our interpretation that the identified wave signatures are the first direct observations of an m=1 slow magneto-acoustic mode in the chromospheric umbra of a sunspot

    The performance of stochastic designs in wellbore drilling operations

    Get PDF
    © 2018, The Author(s). Wellbore drilling operations frequently entail the combination of a wide range of variables. This is underpinned by the numerous factors that must be considered in order to ensure safety and productivity. The heterogeneity and sometimes unpredictable behaviour of underground systems increases the sensitivity of drilling activities. Quite often the operating parameters are set to certify effective and efficient working processes. However, failings in the management of drilling and operating conditions sometimes result in catastrophes such as well collapse or fluid loss. This study investigates the hypothesis that optimising drilling parameters, for instance mud pressure, is crucial if the margin of safe operating conditions is to be properly defined. This was conducted via two main stages: first a deterministic analysis—where the operating conditions are predicted by conventional modelling procedures—and then a probabilistic analysis via stochastic simulations—where a window of optimised operation conditions can be obtained. The outcome of additional stochastic analyses can be used to improve results derived from deterministic models. The incorporation of stochastic techniques in the evaluation of wellbore instability indicates that margins of the safe mud weight window are adjustable and can be extended considerably beyond the limits of deterministic predictions. The safe mud window is influenced and hence can also be amended based on the degree of uncertainty and the permissible level of confidence. The refinement of results from deterministic analyses by additional stochastic simulations is vital if a more accurate and reliable representation of safe in situ and operating conditions is to be obtained during wellbore operations.Published versio

    IRIS Burst Spectra Co-Spatial To A Quiet-Sun Ellerman-Like Brightening

    Get PDF
    Ellerman bombs (EBs) have been widely studied over the past two decades; however, only recently have counterparts of these events been observed in the quiet-Sun. The aim of this article is to further understand small-scale quiet-Sun Ellerman-like brightenings (QSEBs) through research into their spectral signatures, including investigating whether the hot signatures associated with some EBs are also visible co-spatial to any QSEBs. We combine Hα\alpha and Ca II 85428542 \AA\ line scans at the solar limb with spectral and imaging data sampled by the Interface Region Imaging Spectrograph (IRIS). Twenty one QSEBs were identified with average lifetimes, lengths, and widths measured to be around 120120 s, 0.630.63", and 0.350.35", respectively. Three of these QSEBs displayed clear repetitive flaring through their lifetimes, comparable to the behaviour of EBs in Active Regions (ARs). Two QSEBs in this sample occurred co-spatial with increased emission in SDO/AIA 16001600 \AA\ and IRIS slit-jaw imager 14001400 \AA\ data, however, these intensity increases were smaller than reported co-spatial to EBs. One QSEB was also sampled by the IRIS slit during its lifetime, displaying increases in intensity in the Si IV 13931393 \AA\ and Si IV 14031403 \AA\ cores as well as the C II and Mg II line wings, analogous to IRIS bursts (IBs). Using RADYN simulations, we are unable to reproduce the observed QSEB Hα\alpha and Ca II 85428542 \AA\ line profiles leaving the question of the temperature stratification of QSEBs open. Our results imply that some QSEBs could be heated to Transition Region temperatures, suggesting that IB profiles should be observed throughout the quiet-Sun

    Abel Symposia

    Get PDF
    Discrete Morse theory has recently lead to new developments in the theory of random geometric complexes. This article surveys the methods and results obtained with this new approach, and discusses some of its shortcomings. It uses simulations to illustrate the results and to form conjectures, getting numerical estimates for combinatorial, topological, and geometric properties of weighted and unweighted Delaunay mosaics, their dual Voronoi tessellations, and the Alpha and Wrap complexes contained in the mosaics
    • 

    corecore