169 research outputs found
Nucleosynthesis Calculations for the Ejecta of Neutron Star Coalescences
We present the results of fully dynamical r-process network calculations for
the ejecta of neutron star mergers (NSMs). The late stages of the inspiral and
the final violent coalescence of a neutron star binary have been calculated in
detail using a 3D hydrodynamics code (Newtonian gravity plus backreaction
forces emerging from the emission of gravitational waves) and a realistic
nuclear equation of state. The found trajectories for the ejecta serve as input
for dynamical r-process calculations where all relevant nuclear reactions
(including beta-decays depositing nuclear energy in the expanding material) are
followed. We find that all the ejected material undergoes r-process. For an
initial Ye close to 0.1 the abundance distributions reproduce very accurately
the solar r-process pattern for nuclei with A above 130. For lighter nuclei
strongly underabundant (as compared to solar) distributions are encountered. We
show that this behaviour is consistent with the latest observations of very
old, metal-poor stars, despite simplistic arguments that have recently been
raised against the possibility of NSM as possible sources of Galactic r-process
material.Comment: 5 pages, 2 figures, proceedings of Nuclei in the Cosmos 2000, to be
published in Nucl. Phys. A; minor correctio
Nucleosynthesis Basics and Applications to Supernovae
This review concentrates on nucleosynthesis processes in general and their
applications to massive stars and supernovae. A brief initial introduction is
given to the physics in astrophysical plasmas which governs composition
changes. We present the basic equations for thermonuclear reaction rates and
nuclear reaction networks. The required nuclear physics input for reaction
rates is discussed, i.e. cross sections for nuclear reactions,
photodisintegrations, electron and positron captures, neutrino captures,
inelastic neutrino scattering, and beta-decay half-lives. We examine especially
the present state of uncertainties in predicting thermonuclear reaction rates,
while the status of experiments is discussed by others in this volume (see M.
Wiescher). It follows a brief review of hydrostatic burning stages in stellar
evolution before discussing the fate of massive stars, i.e. the nucleosynthesis
in type II supernova explosions (SNe II). Except for SNe Ia, which are
explained by exploding white dwarfs in binary stellar systems (which will not
be discussed here), all other supernova types seem to be linked to the
gravitational collapse of massive stars (M8M) at the end of their
hydrostatic evolution. SN1987A, the first type II supernova for which the
progenitor star was known, is used as an example for nucleosynthesis
calculations. Finally, we discuss the production of heavy elements in the
r-process up to Th and U and its possible connection to supernovae.Comment: 52 pages, 20 figures, uses cupconf.sty (included); to appear in
"Nuclear and Particle Astrophysics", eds. J. Hirsch., D. Page, Cambridge
University Pres
A "kilonova" associated with short-duration gamma-ray burst 130603B
Short-duration gamma-ray bursts (SGRBs) are intense flashes of cosmic
gamma-rays, lasting less than ~2 s, whose origin is one of the great unsolved
questions of astrophysics today. While the favoured hypothesis for their
production, a relativistic jet created by the merger of two compact stellar
objects (specifically, two neutron stars, NS-NS, or a neutron star and a black
hole, NS-BH), is supported by indirect evidence such as their host galaxy
properties, unambiguous confirmation of the model is still lacking. Mergers of
this kind are also expected to create significant quantities of neutron-rich
radioactive species, whose decay should result in a faint transient in the days
following the burst, a so-called "kilonova". Indeed, it is speculated that this
mechanism may be the predominant source of stable r-process elements in the
Universe. Recent calculations suggest much of the kilonova energy should appear
in the near-infrared (nIR) due to the high optical opacity created by these
heavy r-process elements. Here we report strong evidence for such an event
accompanying SGRB 130603B. If this simplest interpretation of the data is
correct, it provides (i) support for the compact object merger hypothesis of
SGRBs, (ii) confirmation that such mergers are likely sites of significant
r-process production and (iii) quite possibly an alternative, un-beamed
electromagnetic signature of the most promising sources for direct detection of
gravitational waves.Comment: preprint of paper appearing in Nature (3 Aug 2013
An Approximation for the rp-Process
Hot (explosive) hydrogen burning or the Rapid Proton Capture Process
(rp-process) occurs in a number of astrophysical environments. Novae and X-ray
bursts are the most prominent ones, but accretion disks around black holes and
other sites are candidates as well. The expensive and often multidimensional
hydro calculations for such events require an accurate prediction of the
thermonuclear energy generation, while avoiding full nucleosynthesis network
calculations. In the present investigation we present an approximation scheme
applicable in a temperature range which covers the whole range of all presently
known astrophysical sites. It is based on the concept of slowly varying
hydrogen and helium abundances and assumes a kind of local steady flow by
requiring that all reactions entering and leaving a nucleus add up to a zero
flux. This scheme can adapt itself automatically and covers situations at low
temperatures, characterized by a steady flow of reactions, as well as high
temperature regimes where a -equilibrium is established.
In addition to a gain of a factor of 15 in computational speed over a full
network calculation, and an energy generation accurate to more than 15 %, this
scheme also allows to predict correctly individual isotopic abundances. Thus,
it delivers all features of a full network at a highly reduced cost and can
easily be implemented in hydro calculations.Comment: 18 pages, LaTeX using astrobib and aas2pp4, includes PostScript
figures; Astrophysical Journal, in press. PostScript source also available at
http://quasar.physik.unibas.ch/preps.htm
Changes in r-process abundances at late times
We explore changes in abundance patterns that occur late in the r process. As
the neutrons available for capture begin to disappear, a quasiequilibrium
funnel shifts material into the large peaks at A=130 and A=195, and into the
rare-earth "bump" at A=160. A bit later, after the free-neutron abundance has
dropped and beta-decay has begun to compete seriously with neutron capture, the
peaks can widen. The degree of widening depends largely on neutron-capture
rates near closed neutron shells and relatively close to stability. We identify
particular nuclei the capture rates of which should be examined experimentally,
perhaps at a radioactive beam facility.Comment: 8 pages, 14 figures included in tex
GC-MS Based Metabolomics and NMR Spectroscopy Investigation of Food Intake Biomarkers for Milk and Cheese in Serum of Healthy Humans.
The identification and validation of food intake biomarkers (FIBs) in human biofluids is a key objective for the evaluation of dietary intake. We report here the analysis of the GC-MS and 1H-NMR metabolomes of serum samples from a randomized cross-over study in 11 healthy volunteers having consumed isocaloric amounts of milk, cheese, and a soy drink as non-dairy alternative. Serum was collected at baseline, postprandially up to 6 h, and 24 h after consumption. A multivariate analysis of the untargeted serum metabolomes, combined with a targeted analysis of candidate FIBs previously reported in urine samples from the same study, identified galactitol, galactonate, and galactono-1,5-lactone (milk), 3-phenyllactic acid (cheese), and pinitol (soy drink) as candidate FIBs for these products. Serum metabolites not previously identified in the urine samples, e.g., 3-hydroxyisobutyrate after cheese intake, were detected. Finally, an analysis of the postprandial behavior of candidate FIBs, in particular the dairy fatty acids pentadecanoic acid and heptadecanoic acid, revealed specific kinetic patterns of relevance to their detection in future validation studies. Taken together, promising candidate FIBs for dairy intake appear to be lactose and metabolites thereof, for lactose-containing products, and microbial metabolites derived from amino acids, for fermented dairy products such as cheese
Explosive nucleosynthesis in core-collapse supernovae
The specific mechanism and astrophysical site for the production of half of
the elements heavier than iron via rapid neutron capture (r-process) remains to
be found. In order to reproduce the abundances of the solar system and of the
old halo stars, at least two components are required: the heavy r-process
nuclei (A>130) and the weak r-process which correspond to the lighter heavy
nuclei (A<130). In this work, we present nucleosynthesis studies based on
trajectories of hydrodynamical simulations for core-collapse supernovae and
their subsequent neutrino-driven winds. We show that the weak r-process
elements can be produced in neutrino-driven winds and we relate their
abundances to the neutrino emission from the nascent neutron star. Based on the
latest hydrodynamical simulations, heavy r-process elements cannot be
synthesized in the neutrino-driven winds. However, by artificially increasing
the wind entropy, elements up to A=195 can be made. In this way one can mimic
the general behavior of an ejecta where the r-process occurs. We use this to
study the impact of the nuclear physics input (nuclear masses, neutron capture
cross sections, and beta-delayed neutron emission) and of the long-time
dynamical evolution on the final abundances.Comment: 10 pages, 8 figures, invited talk, INPC 2010 Vancouver, Journal of
Physics: Conference Serie
r-Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole - Neutron Star Mergers
We consider hot accretion disk outflows from black hole - neutron star
mergers in the context of the nucleosynthesis they produce. We begin with a
three dimensional numerical model of a black hole - neutron star merger and
calculate the neutrino and antineutrino fluxes emitted from the resulting
accretion disk. We then follow the element synthesis in material outflowing the
disk along parameterized trajectories. We find that at least a weak r-process
is produced, and in some cases a main r-process as well. The neutron-rich
conditions required for this production of r-process nuclei stem directly from
the interactions of the neutrinos emitted by the disk with the free neutrons
and protons in the outflow.Comment: 10 pages, 4 figures, one table and additional references adde
The NLTE Barium Abundance in Dwarf Stars in the Metallicity Range of -1 < [Fe/H] < +0.3
We present the results of determination of the barium abundance considering
the non-LTE (NLTE) effects in 172 dwarf stars in the metallicity range of -1<
[Fe/H] <+0.3, assigned to different Galactic substructures by kinematic
criteria. We used a model of the Ba atom with 31 levels of Ba I and 101 levels
of Ba II. The atmosphere models for the investigated stars were computed using
the ATLAS9 code modified by new opacity distribution functions. The NLTE
profiles of the unblended Ba II (4554 A, 5853 A, 6496 A) were computed and then
compared to those observed. The line 6141 A was also used, but with an
allowance for its correlation with the iron line. The average barium abundances
in the thin and thick discs are 0.01 +/- 0.08 and -0.03 +/- 0.07, respectively.
The comparison to the calculations of the Galactic chemical evolution by
Serminato et al. (2009) was conducted. The trend obtained for the Ba abundance
versus [Fe/H] suggests a complex barium production process in the thin and
thick discs
- …