51 research outputs found
Improved algorithm for the direct dynamics variational multi-configurational Gaussian method.
The Direct Dynamics variational Multi-Configurational Gaussian (DD-vMCG) method provides a fully quantum mechanical solution to the time-dependent Schrödinger equation for the time evolution of nuclei with potential surfaces calculated on-the-fly using a quantum chemistry program. Initial studies have shown its potential for flexible and accurate simulations of non-adiabatic excited-state molecular dynamics. In this paper, we present developments to the DD-vMCG algorithm that improve both its accuracy and efficiency. First, a new, efficient parallel algorithm to control the DD-vMCG database of quantum chemistry points is presented along with improvements to the Shepard interpolation scheme. Second, the use of symmetry in describing the potential surfaces is introduced along with a new phase convention in the propagation diabatization. Benchmark calculations on the allene radical cation including all degrees of freedom then show that the new scheme is able to produce a consistent non-adiabatic coupling vector field. This new DD-vMCG version thus opens the route for effectively and accurately treating complex chemical systems using quantum dynamics simulations
Complex symplectic lie algebras with large abelian subalgebras
We present two constructions of complex symplectic structures on Lie algebras with large Abelian ideals. In particular, we completely classify complex symplectic structures on almost Abelian Lie algebras. By considering compact quotients of their corresponding connected, simply connected Lie groups we obtain many examples of complex symplectic manifolds which do not carry (hyper)kähler metrics. We also produce examples of compact complex symplectic manifolds endowed with a fibration whose fibers are Lagrangian tori
Prediction Through Quantum Dynamics Simulations: Photo-excited Cyclobutanone
Quantum dynamics simulations are becoming a standard tool for simulating
photo-excited molecular systems involving a manifold of coupled states, known
as non-adiabatic dynamics. While these simulations have had many successes in
explaining experiments and giving details of non-adiabatic transitions, the
question remains as to their predictive power. In this work, we present a set
of quantum dynamics simulations on cyclobutanone, using both grid-based
multi-configuration time-dependent Hartree (MCTDH) and direct dynamics
variational multi-configuration Gaussian (DD-vMCG) methods. The former used a
parameterised vibronic coupling model Hamiltonian and the latter generated the
potential energy surfaces on-the-fly. The results give a picture of the
non-adiabatic behaviour of this molecule and were used to calculate the signal
from a gas-phase ultrafast electron diffraction (GUED) experiment.
Corresponding experimental results will be obtained and presented at a later
stage for comparison to test the predictive power of the methods. The results
show that over the first 500 fs after photo-excitation to the S state,
cyclobutanone relaxes quickly to the S state, but only a small population
relaxes further to the S state. No significant transfer of population to
the triplet manifold is found. It is predicted that the GUED experiments over
this time scale will see s signal related mostly to the C-O stretch motion and
elongation of the molecular ring along the C-C-O axis.Comment: 31 pages, 7 figure
Closed forms and multi-moment maps
We extend the notion of multi-moment map to geometries defined by closed
forms of arbitrary degree. We give fundamental existence and uniqueness results
and discuss a number of essential examples, including geometries related to
special holonomy. For forms of degree four, multi-moment maps are guaranteed to
exist and are unique when the symmetry group is (3,4)-trivial, meaning that the
group is connected and the third and fourth Lie algebra Betti numbers vanish.
We give a structural description of some classes of (3,4)-trivial algebras and
provide a number of examples.Comment: 36 page
Isochronal annealing effects on local structure, crystalline fraction, and undamaged region size of radiation damage in Ga-stabilized -Pu
The effects on the local structure due to self-irradiation damage of Ga
stabilized -Pu stored at cryogenic temperatures have been examined
using extended x-ray absorption fine structure (EXAFS) experiments. Extensive
damage, seen as a loss of local order, was evident after 72 days of storage
below 15 K. The effect was observed from both the Pu and Ga sites, although
less pronounced around Ga. Isochronal annealing was performed on this sample to
study the annealing processes that occur between cryogenic and room temperature
storage conditions, where damage is mostly reversed. Damage fractions at
various points along the annealing curve have been determined using an
amplitude-ratio method, standard EXAFS fitting, and a spherical crystallite
model, and provide information complementary to previous electrical
resistivity- and susceptibility-based isochronal annealing studies. The use of
a spherical crystallite model accounts for the changes in EXAFS spectra using
just two parameters, namely, the crystalline fraction and the particle radius.
Together, these results are discussed in terms of changes to the local
structure around Ga and Pu throughout the annealing process and highlight the
unusual role of Ga in the behavior of the lowest temperature anneals.Comment: 13 pages, 10 figure
Recommended from our members
Thermodynamics and electrodynamics of unusual narrow-gap semiconductors
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) that has led to a fully funded DOE program to continue this work. The project was directed toward exploring the Ettingshausen effect, which is the direct extension of the familiar Peltier-effect refrigerator (the process used in popular coolers that run off automotive electrical power) in which a magnetic field is used to enhance refrigeration effects at temperatures well below room temperature. Such refrigeration processes are all-solid-state and are of potentially great commercial importance, but essentially no work has been done since the early 1970s. Using modern experimental and theoretical techniques, the authors have advanced the state-of-the-art significantly, laying the groundwork for commercial cryogenic solid-state refrigeration
Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC
Electron bifurcation is a fundamental energy coupling mechanism widespread in microorganisms that thrive under anoxic conditions. These organisms employ hydrogen to reduce CO2, but the molecular mechanisms have remained enigmatic. The key enzyme responsible for powering these thermodynamically challenging reactions is the electron-bifurcating [FeFe]-hydrogenase HydABC that reduces low-potential ferredoxins (Fd) by oxidizing hydrogen gas (H2). By combining single-particle cryo-electron microscopy (cryoEM) under catalytic turnover conditions with site-directed mutagenesis experiments, functional studies, infrared spectroscopy, and molecular simulations, we show that HydABC from the acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui employ a single flavin mononucleotide (FMN) cofactor to establish electron transfer pathways to the NAD(P)+ and Fd reduction sites by a mechanism that is fundamentally different from classical flavin-based electron bifurcation enzymes. By modulation of the NAD(P)+ binding affinity via reduction of a nearby iron–sulfur cluster, HydABC switches between the exergonic NAD(P)+ reduction and endergonic Fd reduction modes. Our combined findings suggest that the conformational dynamics establish a redox-driven kinetic gate that prevents the backflow of the electrons from the Fd reduction branch toward the FMN site, providing a basis for understanding general mechanistic principles of electron-bifurcating hydrogenases
UV photochemistry of the L-cystine disulfide bridge in aqueous solution investigated by femtosecond X-ray absorption spectroscopy
The photolysis of disulfide bonds is implicated in denaturation of proteins exposed to ultraviolet light. Despite this biological relevance in stabilizing the structure of many proteins, the mechanisms of disulfide photolysis are still contested after decades of research. Herein, we report new insight into the photochemistry of L-cystine in aqueous solution by femtosecond X-ray absorption spectroscopy at the sulfur K-edge. We observe homolytic bond cleavage upon ultraviolet irradiation and the formation of thiyl radicals as the single primary photoproduct. Ultrafast thiyl decay due to geminate recombination proceeds at a quantum yield of >80 % within 20 ps. These dynamics coincide with the emergence of a secondary product, attributed to the generation of perthiyl radicals. From these findings, we suggest a mechanism of perthiyl radical generation from a vibrationally excited parent molecule that asymmetrically fragments along a carbon-sulfur bond. Our results point toward a dynamic photostability of the disulfide bridge in condensed-phase
- …