534 research outputs found

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Distributed Genetic Effects of the Corpus Callosum Subregions Suggest Links to Neuropsychiatric Disorders and Related Traits

    No full text
    BACKGROUND: The corpus callosum (CC) is a brain structure with a high heritability and potential role in psychiatric disorders. However, the genetic architecture of the CC and the genetic link with psychiatric disorders remains largely unclear. We investigated the genetic architectures of the volume of the CC and its subregions, and the genetic overlap with psychiatric disorders. METHODS: We applied multivariate GWAS to genetic and T1-weighted MRI data of 40,894 individuals from the UK Biobank, aiming to boost genetic discovery and to assess the pleiotropic effects across volumes of the five subregions of the CC (posterior, mid posterior, central, mid anterior and anterior) obtained by FreeSurfer 7.1. Multivariate GWAS was run combining all subregions, co-varying for relevant variables. Gene-set enrichment analyses were performed using MAGMA. Linkage disequilibrium score regression (LDSC) was used to determine SNP-based heritability of total CC volume and volumes of its subregions as well as their genetic correlations with relevant psychiatric traits. RESULTS: We identified 70 independent loci with distributed effects across the five subregions of the CC (p &lt; 5 × 10 ). Additionally, we identified 33 significant loci in the anterior subregion, 23 in the mid anterior, 29 in the central, 7 in the mid posterior and 56 in the posterior subregion. Gene-set analysis revealed 156 significant genes contributing to volume of the CC subregions (p &lt; 2.6 × 10 ). LDSC estimated the heritability of CC to (h =0.38, SE=0.03), and subregions ranging from 0.22 (SE=0.02) to 0.37 (SE=0.03). We found significant genetic correlations of total CC volume with bipolar disorder (BD, rg=-0.09, SE=0.03; p=5.9 × 10 ) and drinks consumed per week (rg=-0.09, SE=0.02; p=4.8 × 10 ), and volume of the mid anterior subregion with BD (rg=-0.12, SE=0.02; p=2.5 × 10 ), major depressive disorder (rg=-0.12, SE=0.04; p=3.6 × 10 ), drinks consumed per week (rg=-0.13, SE=0.04; p=1.8 × 10 ) and cannabis use (rg=-0.09, SE=0.03; p=8.4 × 10 ). CONCLUSIONS: Our results demonstrate that the CC has a polygenic architecture implicating multiple genes, and show that CC subregion volumes are heritable. We found distinct genetic factors are involved in the development of anterior and posterior subregions, consistent with their divergent functional specialization. Significant genetic correlation between volumes of the CC and bipolar disorder, drinks per week, major depressive disorder and cannabis consumption subregion volumes with psychiatric traits is noteworthy and deserving of further investigation

    RICOPILI: Rapid Imputation for COnsortias PIpeLIne

    No full text
    SUMMARY: Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality control (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis, (vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work. AVAILABILITY AND IMPLEMENTATION: RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Shared genetic risk between migraine and coronary artery disease: A genome-wide analysis of common variants

    Get PDF
    Migraine is a recurrent pain condition traditionally viewed as a neurovascular disorder, but little is known of its vascular basis. In epidemiological studies migraine is associated with an increased risk of cardiovascular disease, including coronary artery disease (CAD), suggesting shared pathogenic mechanisms. This study aimed to determine the genetic overlap between migraine and CAD, and to identify shared genetic risk loci, utilizing a conditional false discovery rate approach and data from two large-scale genome-wide association studies (GWAS) of CAD (C4D, 15,420 cases, 15,062 controls; CARDIoGRAM, 22,233 cases, 64,762 controls) and one of migraine (22,120 cases, 91,284 controls). We found significant enrichment of genetic variants associated with CAD as a function of their association with migraine, which was replicated across two independent CAD GWAS studies. One shared risk locus in the PHACTR1 gene (conjunctional false discovery rate for index SNP rs9349379 < 3.90 x 10−5), which was also identified in previous studies, explained much of the enrichment. Two further loci (in KCNK5 and AS3MT) showed evidence for shared risk (conjunctional false discovery rate < 0.05). The index SNPs at two of the three loci had opposite effect directions in migraine and CAD. Our results confirm previous reports that migraine and CAD share genetic risk loci in excess of what would be expected by chance, and highlight one shared risk locus in PHACTR1. Understanding the biological mechanisms underpinning this shared risk is likely to improve our understanding of both disorders

    Genetic cross-phenotype enrichment of CAD conditional on migraine.

    No full text
    <p>(<b>a-b</b>) Conditional Q-Q plot of nominal versus empirical -log<sub>10</sub> P-values (corrected for inflation) in CAD as a function of significance of association with migraine at the level of P ≀ 1, P < 0.1, P < 0.01 and P < 0.001. Dotted lines indicate the null-hypothesis. (<b>c-d</b>) Plots showing fold enrichment for association to CAD in a given -log<sub>10</sub> P-value bin as a function of association with migraine.</p

    Conjunction FDR Manhattan plots—Shared risk loci between migraine and coronary artery disease (CAD).

    No full text
    <p>SNPs with conjunctional false discovery rate (FDR) < 0.05 are shown with large points. A black line around the large points indicate the most significant SNP in each linkage disequilibrium block, annotated with the closest gene. Separate plots are shown for cross-phenotype loci between <b>a</b>) migraine and C4D, and <b>b</b>) migraine and CARDIoGRAM.</p
    • 

    corecore