516 research outputs found

    Large Grid-Connected Wind Turbines

    Get PDF
    This book covers the technological progress and developments of a large-scale wind energy conversion system along with its future trends, with each chapter constituting a contribution by a different leader in the wind energy arena. Recent developments in wind energy conversion systems, system optimization, stability augmentation, power smoothing, and many other fascinating topics are included in this book. Chapters are supported through modeling, control, and simulation analysis. This book contains both technical and review articles

    A Review on Direct Power Control of Pulsewidth Modulation Converters

    Get PDF

    Stabilized lasers for advanced gravitational wave detectors

    Get PDF
    Second generation gravitational wave detectors require high power lasers with more than 100 W of output power and with very low temporal and spatial fluctuations. To achieve the demanding stability levels required, low noise techniques and adequate control actuators have to be part of the high power laser design. In addition feedback control and passive noise filtering is used to reduce the fluctuations in the so-called prestabilized laser system (PSL). In this paper, we discuss the design of a 200 W PSL which is under development for the Advanced LIGO gravitational wave detector and will present the first results. The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described

    Improving irrigation efficiency will be insufficient to meet future water demand in the Nile Basin

    Get PDF
    The Nile River Basin covers an area of approximately 3.2 million km2 and is shared by 11 countries. Rapid population growth is expected in the region. The irrigation requirements of Nile riparian countries of existing (6.4 million ha) and additional planned (3.8 million ha, 2050) irrigation schemes were calculated, and the likely water savings through improved irrigation efficiency were evaluated. We applied SPARE:WATER to calculate irrigation demands on the basis of the well-known FAO56 Crop Irrigation Guidelines. Egypt (67 km3 yr-1) and Sudan (19 km3 yr-1) consume the highest share of the 84 km3 yr-1 total (2011). Assuming todayÂ’s poor irrigation infrastructure, the total consumption was predicted to increase to 123 km3 yr-1 (2050), an amount far exceeding the total annual yield of the Nile Basin. Therefore, a key challenge for water resources management in the Nile Basin is balancing the increasing irrigation water demand basin-wide with the available water supply. We found that water savings from improved irrigation technology will not be able to meet the additional needs of planned areas. Under a theoretical scenario of maximum possible efficiency, the deficit would still be 5 km3 yr-1. For more likely efficiency improvement scenarios, the deficit ranged between 23 and 29 km3 yr-1. Our results suggest that that improving irrigation efficiency may substantially contribute to decreasing water stress on the Nile system but would not completely meet the demand. Study Region: The Nile River Basin covers an area of approximately 3.2 million km2 and is shared by 11 countries. Rapid population growth is expected in the region. Study Focus: Record population growth is expected for the study region. Therefore, the irrigation requirements of Nile riparian countries of existing (6.4 million ha) and additional planned (3.8 million ha, 2050) irrigation schemes were calculated, and likely water savings through improved irrigation efficiency were evaluated. We applied a spatial decision support system (SPARE:WATER) to calculate the irrigation demands on the basis of the well-known FAO56 Crop Irrigation Guidelines. New Hydrological Insights for the Region: Egypt (67 km3yr-1) and Sudan (19 km3yr-1) consume the highest share of 84 km3yr-1 (2011). Assuming todayÂ’s poor irrigation infrastructure, the total demand were predicted to increase to 123 km3yr-1 (2050), an amount far exceeding the total annual yield of the Nile Basin. Therefore, a key challenge for water resources management in the Nile Basin is balancing the increasing irrigation water demand and available water supply. We found that water savings from improved irrigation technology will not be able to meet the additional needs of planned areas. Under a theoretical scenario of maximum possible efficiency, the deficit would still be 5 km3yr-1. For more likely efficiency improvement scenarios, the deficit ranges between 23 and 29 km3yr-1. Our results suggest that improving irrigation efficiency may substantially contribute to decreasing water stress on the Nile system but would not completely meet the demand

    The Causal Structure of Emotions in Aristotle: Hylomorphism, Causal Interaction between Mind and Body, and Intentionality

    Get PDF
    Recently, a strong hylomorphic reading of Aristotelian emotions has been put forward, one that allegedly eliminates the problem of causal interaction between soul and body. Taking the presentation of emotions in de An. I 1 as a starting point and basic thread, but relying also on the discussion of Rh. II, I will argue that this reading only takes into account two of the four causes of emotions, and that, if all four of them are included into the picture, then a causal interaction of mind and body remains within Aristotelian emotions, independent of how strongly their hylomorphism is understood. Beyond the discussion with this recent reading, the analysis proposed of the fourfold causal structure of emotions is also intended as a hermeneutical starting point for a comprehensive analysis of particular emotions in Aristotle. Through the different causes Aristotle seems to account for many aspects of the complex phenomenon of emotion, including its physiological causes, its mental causes, and its intentional object

    Monte Carlo-based calibration and uncertainty analysis of a coupled plant growth and hydrological model

    Get PDF
    Computer simulations are widely used to support decision making and planning in the agriculture sector. On the one hand, many plant growth models use simplified hydrological processes and structures – for example, by the use of a small number of soil layers or by the application of simple water flow approaches. On the other hand, in many hydrological models plant growth processes are poorly represented. Hence, fully coupled models with a high degree of process representation would allow for a more detailed analysis of the dynamic behaviour of the soil–plant interface. We coupled two of such high-process-oriented independent models and calibrated both models simultaneously. The catchment modelling framework (CMF) simulated soil hydrology based on the Richards equation and the van Genuchten–Mualem model of the soil hydraulic properties. CMF was coupled with the plant growth modelling framework (PMF), which predicts plant growth on the basis of radiation use efficiency, degree days, water shortage and dynamic root biomass allocation. The Monte Carlo-based generalized likelihood uncertainty estimation (GLUE) method was applied to parameterize the coupled model and to investigate the related uncertainty of model predictions. Overall, 19 model parameters (4 for CMF and 15 for PMF) were analysed through 2 × 106 model runs randomly drawn from a uniform distribution. The model was applied to three sites with different management in Müncheberg (Germany) for the simulation of winter wheat (Triticum aestivum L.) in a cross-validation experiment. Field observations for model evaluation included soil water content and the dry matter of roots, storages, stems and leaves. The shape parameter of the retention curve n was highly constrained, whereas other parameters of the retention curve showed a large equifinality. We attribute this slightly poorer model performance to missing leaf senescence, which is currently not implemented in PMF. The most constrained parameters for the plant growth model were the radiation-use efficiency and the base temperature. Cross validation helped to identify deficits in the model structure, pointing out the need for including agricultural management options in the coupled model

    NFKB1 regulates human NK cell maturation and effector functions

    Get PDF
    12siopenopenLougaris, Vassilios; Patrizi, Ornella; Baronio, Manuela; Tabellini, Giovanna; Tampella, Giacomo; Damiati, Eufemia; Frede, Natalie; van der Meer, Jos W.M.; Fliegauf, Manfred; Grimbacher, Bodo; Parolini, Silvia; Plebani, AlessandroLougaris, Vassilios; Patrizi, Ornella; Baronio, Manuela; Tabellini, Giovanna; Tampella, Giacomo; Damiati, Eufemia; Frede, Natalie; van der Meer, Jos W. M.; Fliegauf, Manfred; Grimbacher, Bodo; Parolini, Silvia; Plebani, Alessandr
    • …
    corecore