1,502 research outputs found
Easylife: the data reduction and survey handling system for VIPERS
We present Easylife, the software environment developed within the framework
of the VIPERS project for automatic data reduction and survey handling.
Easylife is a comprehensive system to automatically reduce spectroscopic data,
to monitor the survey advancement at all stages, to distribute data within the
collaboration and to release data to the whole community. It is based on the
OPTICON founded project FASE, and inherits the FASE capabilities of modularity
and scalability. After describing the software architecture, the main reduction
and quality control features and the main services made available, we show its
performance in terms of reliability of results. We also show how it can be
ported to other projects having different characteristics.Comment: pre-print, 17 pages, 4 figures, accepted for publication in
Publications of the Astronomical Society of the Pacifi
EZ: A Tool for Automatic Redshift Measurement
We present EZ (Easy redshift), a tool we have developed within the VVDS
project to help in redshift measurement from otpical spectra. EZ has been
designed with large spectroscopic surveys in mind, and in its development
particular care has been given to the reliability of the results obtained in an
automatic and unsupervised mode. Nevertheless, the possibility of running it
interactively has been preserved, and a graphical user interface for results
inspection has been designed. EZ has been successfully used within the VVDS
project, as well as the zCosmos one. In this paper we describe its architecture
and the algorithms used, and evaluate its performances both on simulated and
real data. EZ is an open source program, freely downloadable from
http://cosmos.iasf-milano.inaf.it/pandora.Comment: accepted for publication in Publications of the Astronomical Society
of the Pacifi
Visualization, Exploration and Data Analysis of Complex Astrophysical Data
In this paper we show how advanced visualization tools can help the
researcher in investigating and extracting information from data. The focus is
on VisIVO, a novel open source graphics application, which blends high
performance multidimensional visualization techniques and up-to-date
technologies to cooperate with other applications and to access remote,
distributed data archives. VisIVO supports the standards defined by the
International Virtual Observatory Alliance in order to make it interoperable
with VO data repositories. The paper describes the basic technical details and
features of the software and it dedicates a large section to show how VisIVO
can be used in several scientific cases.Comment: 32 pages, 15 figures, accepted by PAS
1.65 micrometers (H-band) surface photometry of galaxies. III: observations of 558 galaxies with the TIRGO 1.5m telescope
We present near-infrared H-band (1.65 micron) surface photometry of 558
galaxies in the Coma Supercluster and in the Virgo cluster. This data set,
obtained with the Arcetri NICMOS3 camera ARNICA mounted on the Gornergrat
Infrared Telescope, is aimed at complementing, with observations of mostly
early-type objects, our NIR survey of spiral galaxies in these regions,
presented in previous papers of this series. Magnitudes at the optical radius,
total magnitudes, isophotal radii and light concentration indices are derived.
We confirm the existence of a positive correlation between the near-infrared
concentration index and the galaxy H-band luminosity. (Tables 1 and 2 are only
available in electronic form upon request to [email protected])Comment: 12 pages, 6 figures. Accepted for publication in A&A
Electrobioremediation of oil spills
Annually, thousands of oil spills occur across the globe. As a result, petroleum substances and petrochemical compounds are widespread contaminants causing concern due to their toxicity and recalcitrance. Many remediation strategies have been developed using both physicochemical and biological approaches. Biological strategies are most benign, aiming to enhance microbial metabolic activities by supplying limiting inorganic nutrients, electron acceptors or donors, thus stimulating oxidation or reduction of contaminants. A key issue is controlling the supply of electron donors/acceptors. Bioelectrochemical systems (BES) have emerged, in which an electrical current serves as either electron donor or acceptor for oil spill bioremediation. BES are highly controllable and can possibly also serve as biosensors for real time monitoring of the degradation process. Despite being promising, multiple aspects need to be considered to make BES suitable for field applications including system design, electrode materials, operational parameters, mode of action and radius of influence. The microbiological processes, involved in bioelectrochemical contaminant degradation, are currently not fully understood, particularly in relation to electron transfer mechanisms. Especially in sulfate rich environments, the sulfur cycle appears pivotal during hydrocarbon oxidation. This review provides a comprehensive analysis of the research on bioelectrochemical remediation of oil spills and of the key parameters involved in the process
The VIMOS Public Extragalactic Redshift Survey (VIPERS). Never mind the gaps: comparing techniques to restore homogeneous sky coverage
[Abridged] Non-uniform sampling and gaps in sky coverage are common in galaxy
redshift surveys, but these effects can degrade galaxy counts-in-cells and
density estimates. We carry out a comparison of methods that aim to fill the
gaps to correct for the systematic effects. Our study is motivated by the
analysis of the VIMOS Extragalactic Redshift Survey (VIPERS), a flux-limited
survey (i<22.5) based on one-pass observations with VIMOS, with gaps covering
25% of the surveyed area and a mean sampling rate of 35%. Our findings are
applicable to other surveys with similar observing strategies. We compare 1)
two algorithms based on photometric redshift, that assign redshifts to galaxies
based on the spectroscopic redshifts of the nearest neighbours, 2) two Bayesian
methods, the Wiener filter and the Poisson-Lognormal filter. Using galaxy mock
catalogues we quantify the accuracy of the counts-in-cells measurements on
scales of R=5 and 8 Mpc/h after applying each of these methods. We also study
how they perform to account for spectroscopic redshift error and inhomogeneous
and sparse sampling rate. We find that in VIPERS the errors in counts-in-cells
measurements on R<10 Mpc/h scales are dominated by the sparseness of the
sample. All methods underpredict by 20-35% the counts at high densities. This
systematic bias is of the same order as random errors. No method outperforms
the others. Random and systematic errors decrease for larger cells. We show
that it is possible to separate the lowest and highest densities on scales of 5
Mpc/h at redshifts 0.5<z<1.1, over a large volume such as in VIPERS survey.
This is vital for the characterisation of cosmic variance and rare populations
(e.g, brightest galaxies) in environmental studies at these redshifts.Comment: 17 pages, 13 figures, accepted for publication in A&A (revised
version after minor revision and language editing
Euclid Space Mission: building the sky survey
The Euclid space mission proposes to survey 15000 square degrees of the
extragalactic sky during 6 years, with a step-and-stare technique. The
scheduling of observation sequences is driven by the primary scientific
objectives, spacecraft constraints, calibration requirements and physical
properties of the sky. We present the current reference implementation of the
Euclid survey and on-going work on survey optimization.Comment: to appear in Proceedings IAU Symposium No. 306, "Statistical
Challenges in 21st Century Cosmology", A.F. Heavens, J.-L. Starck & A.
Krone-Martins, ed
- …
