70 research outputs found

    Deep Information Networks

    Full text link
    We describe a novel classifier with a tree structure, designed using information theory concepts. This Information Network is made of information nodes, that compress the input data, and multiplexers, that connect two or more input nodes to an output node. Each information node is trained, independently of the others, to minimize a local cost function that minimizes the mutual information between its input and output with the constraint of keeping a given mutual information between its output and the target (information bottleneck). We show that the system is able to provide good results in terms of accuracy, while it shows many advantages in terms of modularity and reduced complexity

    4D-Flow Cardiovascular Magnetic Resonance Sequence for Aortic Assessment: Multi-Vendor and Multi-Magnetic Field Reproducibility in Healthy Volunteers

    Get PDF
    Objectives: Four-dimensional (4D) flow cardiac magnetic resonance (CMR) represents an emerging technique for non-invasive evaluation of the aortic flow. The aim of this study was to investigate a 4D-flow CMR sequence for the assessment of thoracic aorta comparing different vendors and different magnetic fields of MR scanner in fifteen healthy volunteers. Methods: CMR was performed on three different MRI scanners: one at 1.5 T and two at 3 T. Flow parameters and planar wall shear stress (WSS) were extracted from six transversal planes along the full thoracic aorta by three operators. Inter-vendor comparability as well as scan-rescan, intra- and interobserver reproducibility were examined. Results: A high heterogeneity was found in the comparisons for each operator and for each scanner in the six transversal planes analysis (Friedman rank-sum test; p-value <= 0.05). Among all, the most reproducible measures were extracted for the sinotubular junction plane and for the flow parameters. Conclusions: Our results suggest that standardized procedures have to be defined to make more comparable and reproducible 4D-flow parameters and mainly, clinical impactfulness. Further studies on sequences development are needed to validate 4D-flow MRI assessment across vendors and magnetic fields also compared to a missing gold standard

    Novel Antimicrobial Strategies to Prevent Biofilm Infections in Catheters after Radical Cystectomy: A Pilot Study

    Get PDF
    Catheter-associated infections in bladder cancer patients, following radical cystectomy or ureterocutaneostomy, are very frequent, and the development of antibiotic resistance poses great challenges for treating biofilm-based infections. Here, we characterized bacterial communities from catheters of patients who had undergone radical cystectomy for muscle-invasive bladder cancer. We evaluated the efficacy of conventional antibiotics, alone or combined with the human ApoB-derived antimicrobial peptide r(P)ApoBLAla, to treat ureteral catheter-colonizing bacterial communities on clinically isolated bacteria. Microbial communities adhering to indwelling catheters were collected during the patients' regular catheter change schedules (28 days) and extracted within 48 h. Living bacteria were characterized using selective media and biochemical assays. Biofilm growth and novel antimicrobial strategies were analyzed using confocal laser scanning microscopy. Statistical analyses confirmed the relevance of the biofilm reduction induced by conventional antibiotics (fosfomycin, ceftriaxone, ciprofloxacin, gentamicin, and tetracycline) and a well-characterized human antimicrobial peptide r(P)ApoBLAla (1:20 ratio, respectively). Catheters showed polymicrobial communities, with Enterobactericiae and Proteus isolates predominating. In all samples, we recorded a meaningful reduction in biofilms, in both biomass and thickness, upon treatment with the antimicrobial peptide r(P)ApoBLAla in combination with low concentrations of conventional antibiotics. The results suggest that combinations of conventional antibiotics and human antimicrobial peptides might synergistically counteract biofilm growth on ureteral catheters, suggesting novel avenues for preventing catheter-associated infections in patients who have undergone radical cystectomy and ureterocutaneostomy

    Radiomic and genomic machine learning method performance for prostate cancer diagnosis : systematic literature review

    Get PDF
    Background Machine learning algorithms have been drawing attention at the joining of pathology and radiology in prostate cancer research. However, due to their algorithmic learning complexity and the variability of their architecture, there is an ongoing need to analyze their performance. Objective This study assesses the source of heterogeneity and the performance of machine learning applied to radiomic, genomic, and clinical biomarkers for the diagnosis of prostate cancer. One research focus of this study was on clearly identifying problems and issues related to the implementation of machine learning in clinical studies. Methods Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol, 816 titles were identified from the PubMed, Scopus, and OvidSP databases. Studies that used machine learning to detect prostate cancer and provided performance measures were included in our analysis. The quality of the eligible studies was assessed using the QUADAS-2 (quality assessment of diagnostic accuracy studies–version 2) tool. The hierarchical multivariate model was applied to the pooled data in a meta-analysis. To investigate the heterogeneity among studies, I2 statistics were performed along with visual evaluation of coupled forest plots. Due to the internal heterogeneity among machine learning algorithms, subgroup analysis was carried out to investigate the diagnostic capability of machine learning systems in clinical practice. Results In the final analysis, 37 studies were included, of which 29 entered the meta-analysis pooling. The analysis of machine learning methods to detect prostate cancer reveals the limited usage of the methods and the lack of standards that hinder the implementation of machine learning in clinical applications. Conclusions The performance of machine learning for diagnosis of prostate cancer was considered satisfactory for several studies investigating the multiparametric magnetic resonance imaging and urine biomarkers; however, given the limitations indicated in our study, further studies are warranted to extend the potential use of machine learning to clinical settings. Recommendations on the use of machine learning techniques were also provided to help researchers to design robust studies to facilitate evidence generation from the use of radiomic and genomic biomarkers

    The new paradigm of Network Medicine to analyse breast cancer phenotypes

    Get PDF
    Breast cancer (BC) is a heterogeneous and complex disease as witnessed by the existence of different subtypes and clinical characteristics that poses significant challenges in disease management. The complexity of this tumor may rely on the highly interconnected nature of the various biological processes as stated by the new paradigm of Network Medicine. We explored The Cancer Genome Atlas (TCGA)-BRCA data set, by applying the network-based algorithm named SWItch Miner, and mapping the findings on the human interactome to capture the molecular interconnections associated with the disease modules. To characterize BC phenotypes, we constructed protein–protein interaction modules based on “hub genes”, called switch genes, both common and specific to the four tumor subtypes. Transcriptomic profiles of patients were stratified according to both clinical (immunohistochemistry) and genetic (PAM50) classifications. 266 and 372 switch genes were identified from immunohistochemistry and PAM50 classifications, respectively. Moreover, the identified switch genes were functionally characterized to select an interconnected pathway of disease genes. By intersecting the common switch genes of the two classifications, we selected a unique signature of 28 disease genes that were BC subtype-independent and classification subtype-independent. Data were validated both in vitro (10 BC cell lines) and ex vivo (66 BC tissues) experiments. Results showed that four of these hub proteins (AURKA, CDC45, ESPL1, and RAD54L) were over-expressed in all tumor subtypes. Moreover, the inhibition of one of the identified switch genes (AURKA) similarly affected all BC subtypes. In conclusion, using a network-based approach, we identified a common BC disease module which might reflect its pathological signature, suggesting a new vision to face with the disease heterogeneity

    Association Between Circulating CD4+ T Cell Methylation Signatures of Network-Oriented SOCS3 Gene and Hemodynamics in Patients Suffering Pulmonary Arterial Hypertension

    Get PDF
    Pathogenic DNA methylation changes may be involved in pulmonary arterial hypertension (PAH) onset and its progression, but there is no data on potential associations with patient-derived hemodynamic parameters. The reduced representation bisulfite sequencing (RRBS) platform identified N= 631 differentially methylated CpG sites which annotated to N= 408 genes (DMGs) in circulating CD4(+) T cells isolated from PAH patients vs. healthy controls (CTRLs). A promoter-restricted network analysis established the PAH subnetwork that included 5 hub DMGs (SOCS3, GNAS, ITGAL, NCOR2, NFIC) and 5 non-hub DMGs (NR4A2, GRM2, PGK1, STMN1, LIMS2). The functional analysis revealed that the SOCS3 gene was the most recurrent among the top ten significant pathways enriching the PAH subnetwork, including the growth hormone receptor and the interleukin-6 signaling. Correlation analysis showed that the promoter methylation levels of each network-oriented DMG were associated individually with hemodynamic parameters. In particular, SOCS3 hypomethylation was negatively associated with right atrial pressure (RAP) and positively associated with cardiac index (CI) (vertical bar r vertical bar >= 0.6). A significant upregulation of the SOCS3, ITGAL, NFIC, NCOR2, and PGK1 mRNA levels (qRT-PCR) in peripheral blood mononuclear cells from PAH patients vs. CTRLs was found (P <= 0.05). By immunoblotting, a significant upregulation of the SOCS3 protein was confirmed in PAH patients vs. CTRLs (P < 0.01). This is the first network-oriented study which integrates circulating CD4(+) T cell DNA methylation signatures, hemodynamic parameters, and validation experiments in PAH patients at first diagnosis or early follow-up. Our data suggests that SOCS3 gene might be involved in PAH pathogenesis and serve as potential prognostic biomarker

    A machine learning model for supporting symptom-based referral and diagnosis of bronchitis and pneumonia in limited resource settings

    Get PDF
    Pneumonia is a leading cause of mortality in limited resource settings (LRS), which are common in low- and middle-income countries (LMICs). Accurate referrals can reduce the devastating impact of pneumonia, especially in LRS. Discriminating pneumonia from other respiratory conditions based only on symptoms is a major challenge. Machine learning has shown promise in overcoming the diagnostic difficulties of pneumonia (i.e., low specificity of symptoms, lack of accessible diagnostic tests and varied clinical presentation). Many scientific papers are now focusing on deep-learning methods applied to clinical images, which is unaffordable for initial patient referral in LMICs. The current study used a dataset of 4500 patients (1500 patients affected by bronchitis, 3000 by pneumonia) from a middle-income country, containing information on subject population characteristics, symptoms and laboratory test results. Manual feature selection was performed, focusing on clinical symptoms that are easily measurable in LRS and in community settings. Three common machine learning methods were tested and compared: logistic regression; decision tree and support vector machine. Models were developed through a holdout process of training-validation and testing. We focused on six clinically relevant, easily interpreted patient symptoms as best indicators for pneumonia. Our final model was a decision tree, achieving an AUC of 93%, with the advantage of being fully intelligible and easily interpreted. The performance achieved suggested that intelligible machine learning models can enhance symptom-based referral of pneumonia in LRS and in community settings

    A self-attention deep neural network regressor for real time blood glucose estimation in paediatric population using physiological signals

    Get PDF
    With the advent of modern digital technology, the physiological signals (such as electrocardiogram) are being acquired from portable wearable devices which are being used for non-invasive chronic disease management (such as Type 1 Diabetes). The diabetes management requires real-time assessment of blood glucose which is cumbersome for paediatric population due to clinical complexity and invasiveness. Therefore, real-time non-invasive blood glucose estimation is now pivotal for effective diabetes management. In this paper, we propose a Self-Attention Deep Neural Network Regressor for real-time non-invasive blood glucose estimation for paediatric population based on automatically extracted beat morphology. The first stage performs Morphological Extractor based on Self-Attention based Long Short-Term Memory driven by Convolutional Neural Network for highlighting local features based on temporal context. The second stage is based on Morphological Regressor driven by multilayer perceptron with dropout and batch normalization to avoid overfitting. We performed feature selection via logit model followed by Spearman’s correlation among features to avoid feature redundancy. We trained as tested our model on publicly available MIT/BIH-Physionet databases and physiological signals acquired from a T1D paediatric population

    The use of artificial intelligence systems in diagnosis of pneumonia via signs and symptoms : a systematic review

    Get PDF
    Artificial Intelligence (AI) systems using symptoms/signs to detect respiratory diseases may improve diagnosis especially in limited resource settings. Heterogeneity in such AI systems creates an ongoing need to analyse performance to inform future research. This systematic literature review aimed to investigate performance and reporting of diagnostic AI systems using machine learning (ML) for pneumonia detection based on symptoms and signs, and to provide recommendations on best practices for designing and implementing predictive ML algorithms. This article was conducted following the PRISMA protocol, 876 articles were identified by searching PubMed, Scopus, and OvidSP databases (last search 5th May 2021). For inclusion, studies must have differentiated clinically diagnosed pneumonia from controls or other diseases using AI. Risk of Bias was evaluated using The STARD 2015 tool. Information was extracted from 16 included studies regarding study characteristics, ML-model features, reference tests, study population, accuracy measures and ethical aspects. All included studies were highly heterogenous concerning the study design, setting of diagnosis, study population and ML algorithm. Study reporting quality in methodology and results was low. Ethical issues surrounding design and implementation of the AI algorithms were not well explored. Although no single performance measure was used in all studies, most reported an accuracy measure over 90%. There is strong evidence to support further investigations of ML to automatically detect pneumonia based on easily recognisable symptoms and signs. To help improve the efficacy of future research, recommendations for designing and implementing AI tools based on the findings of this study are provided
    • …
    corecore