531 research outputs found
Spectroscopic binaries among Hipparcos M giants II. Binary frequency
This paper is the second one in a series devoted to the study of properties
of binaries involving M giants. The binary frequency of field M giants is
derived and compared with the binary fraction of K giants. Diagrams of the
CORAVEL spectroscopic parameter Sb (measuring the average line-width) vs.
radial-velocity standard deviation for our samples are used to define
appropriate binarity criteria. These then serve to extract the binarity
fraction among the M giants. Comparison is made to earlier data on K giants
binarity frequency. The Sb parameter is discussed in relation to global stellar
parameters and the Sb vs. stellar radius relation is used to identify fast
rotators. We find that the spectroscopic binary detection rate among field M
giants, in a sample with a low number of velocity measurements (~2), unbiased
toward earlier known binaries, is 6.3%. This is less than half of the analogous
rate for field K giants, likely resulting from a real difference. This
difference originates in the greater difficulty of finding binaries among M
giants because of their smaller orbital velocity amplitudes and larger
intrinsic jitter and in the different distributions of K and M giants in the
eccentricity-period diagram. A larger detection rate was obtained in a smaller
M giant sample with more radial velocity measurements per object: 11.1%
confirmed plus 2.7% possible binaries. The CORAVEL spectroscopic parameter Sb
was found to correlate better with the stellar radius than with either
luminosity or effective temperature separately. Two outliers of the Sb vs.
stellar radius relation, HD 190658 and HD 219654, have been recognized as fast
rotators. The rotation is companion-induced, as both objects turn out to be
spectroscopic binaries.Comment: 12 pages, 7 figures, accepted for publication in A&A, language
editing changes onl
Zero-variance principle for Monte Carlo algorithms
We present a general approach to greatly increase at little cost the
efficiency of Monte Carlo algorithms. To each observable to be computed we
associate a renormalized observable (improved estimator) having the same
average but a different variance. By writing down the zero-variance condition a
fundamental equation determining the optimal choice for the renormalized
observable is derived (zero-variance principle for each observable separately).
We show, with several examples including classical and quantum Monte Carlo
calculations, that the method can be very powerful.Comment: 9 pages, Latex, to appear in Phys. Rev. Let
Unveiling the nature of IGR J17177-3656 with X-ray, NIR and Radio observations
We report on the first broad-band (1-200 keV) simultaneous Chandra-INTEGRAL
observations of the recently discovered hard X-ray transient IGR J17177-3656
that took place on 2011, March 22, about two weeks after the source discovery.
The source had an average absorbed 1-200 keV flux of about 8x10^(-10) erg
cm^(-2) s^(-1). We extracted a precise X-ray position of IGR J17177-3656, RA=17
17 42.62, DEC= -36 56 04.5 (90% uncertainty of 0.6"). We also report Swift,
near infrared and quasi simultaneous radio follow-up observations. With the
multi-wavelength information at hand, we propose IGR J17177-3656 is a low-mass
X-ray binary, seen at high inclination, probably hosting a black hole.Comment: 8 pages, 8 figures, accepted for publication in Ap
Hypergraph model of social tagging networks
The past few years have witnessed the great success of a new family of
paradigms, so-called folksonomy, which allows users to freely associate tags to
resources and efficiently manage them. In order to uncover the underlying
structures and user behaviors in folksonomy, in this paper, we propose an
evolutionary hypergrah model to explain the emerging statistical properties.
The present model introduces a novel mechanism that one can not only assign
tags to resources, but also retrieve resources via collaborative tags. We then
compare the model with a real-world dataset: \emph{Del.icio.us}. Indeed, the
present model shows considerable agreement with the empirical data in following
aspects: power-law hyperdegree distributions, negtive correlation between
clustering coefficients and hyperdegrees, and small average distances.
Furthermore, the model indicates that most tagging behaviors are motivated by
labeling tags to resources, and tags play a significant role in effectively
retrieving interesting resources and making acquaintance with congenial
friends. The proposed model may shed some light on the in-depth understanding
of the structure and function of folksonomy.Comment: 7 pages,7 figures, 32 reference
Using muon rings for the optical throughput calibration of the SST-1M prototype for the Cherenkov Telescope Array
Imaging Atmospheric Cherenkov Telescopes (IACTs) are ground-based instruments
devoted to the study of very high energy gamma-rays coming from space. The
detection technique consists of observing images created by the Cherenkov light
emitted when gamma rays, or more generally cosmic rays, propagate through the
atmosphere. While in the case of protons or gamma-rays the images present a
filled and more or less elongated shape, energetic muons penetrating the
atmosphere are visualised as characteristic circular rings or arcs. A
relatively simple analysis of the ring images allows the reconstruction of all
the relevant parameters of the detected muons, such as the energy, the impact
parameter, and the incoming direction, with the final aim to use them to
calibrate the total optical throughput of the given IACT telescope. We present
the results of preliminary studies on the use of images created by muons as
optical throughput calibrators of the single mirror small size telescope
prototype SST-1M proposed for the Cherenkov Telescope Array.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Software design for the control system for Small-Size Telescopes with single-mirror of the Cherenkov Telescope Array
The Small-Size Telescope with single-mirror (SST-1M) is a 4 m Davies-Cotton
telescope and is among the proposed telescope designs for the Cherenkov
Telescope Array (CTA). It is conceived to provide the high-energy ( few TeV)
coverage. The SST-1M contains proven technology for the telescope structure and
innovative electronics and photosensors for the camera. Its design is meant to
be simple, low-budget and easy-to-build industrially.
Each device subsystem of an SST-1M telescope is made visible to CTA through a
dedicated industrial standard server. The software is being developed in
collaboration with the CTA Medium-Size Telescopes to ensure compatibility and
uniformity of the array control. Early operations of the SST-1M prototype will
be performed with a subset of the CTA central array control system based on the
Alma Common Software (ACS). The triggered event data are time stamped,
formatted and finally transmitted to the CTA data acquisition.
The software system developed to control the devices of an SST-1M telescope
is described, as well as the interface between the telescope abstraction to the
CTA central control and the data acquisition system.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
DigiCam - Fully Digital Compact Read-out and Trigger Electronics for the SST-1M Telescope proposed for the Cherenkov Telescope Array
The SST-1M is one of three prototype small-sized telescope designs proposed
for the Cherenkov Telescope Array, and is built by a consortium of Polish and
Swiss institutions. The SST-1M will operate with DigiCam - an innovative,
compact camera with fully digital read-out and trigger electronics. A high
level of integration will be achieved by massively deploying state-of-the-art
multi-gigabit transmission channels, beginning from the ADC flash converters,
through the internal data and trigger signals transmission over backplanes and
cables, to the camera's server link. Such an approach makes it possible to
design the camera to fit the size and weight requirements of the SST-1M
exactly, and provide low power consumption, high reliability and long lifetime.
The structure of the digital electronics will be presented, along with main
physical building blocks and the internal architecture of FPGA functional
subsystems.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Lucky Imaging survey for southern M dwarf binaries
While M dwarfs are the most abundant stars in the Milky Way, there is still
large uncertainty about their basic physical properties (mass, luminosity,
radius, etc.) as well as their formation environment. Precise knowledge of
multiplicity characteristics and how they change in this transitional mass
region, between Sun-like stars on the one side and very low mass stars and
brown dwarfs on the other, provide constraints on low mass star and brown dwarf
formation. In the largest M dwarf binary survey to date, we search for
companions to active, and thus preferentially young, M dwarfs in the solar
neighbourhood. We study their binary/multiple properties, such as the
multiplicity frequency and distributions of mass ratio and separation, and
identify short period visual binaries, for which orbital parameters and hence
dynamical mass estimates can be derived in the near future. The observations
are carried out in the SDSS i' and z' band using the Lucky Imaging camera
AstraLux Sur at the ESO 3.5 m New Technology Telescope. In the first part of
the survey, we observed 124 M dwarfs of integrated spectral types M0-M6 and
identified 34 new and 17 previously known companions to 44 stars. We derived
relative astrometry and component photometry for these systems. More than half
of the binaries have separations smaller than 1 arcsec and would have been
missed in a simply seeing-limited survey. Correcting our sample for selection
effects yields a multiplicity fraction of 32+/-6% for 108 M dwarfs within 52 pc
and with angular separations of 0.1-6.0 arcsec, corresponding to projected
separation 3-180 AU at median distance 30 pc. Compared to early-type M dwarfs
(M>0.3M_Sun), later type (and hence lower mass) M dwarf binaries appear to have
closer separations, and more similar masses.Comment: 18 pages, 9 figures. Minor corrections and changes. Revised to match
accepted A&A versio
The energy gap of intermediate-valent SmB6 studied by point-contact spectroscopy
We have investigated the intermediate valence narrow-gap semiconductor SmB6
at low temperatures using both conventional spear-anvil type point contacts as
well as mechanically controllable break junctions. The zero-bias conductance
varied between less than 0.01 mikrosiemens and up to 1 mS. The position of the
spectral anomalies, which are related to the different activation energies and
band gaps of SmB6, did not depend on the the contact size. Two different
regimes of charge transport could be distinguished: Contacts with large zero -
bias conductance are in the diffusive Maxwell regime. They had spectra with
only small non-linearities. Contacts with small zero - bias conductance are in
the tunnelling regime. They had larger anomalies, but still indicating a finite
45 % residual quasiparticle density of states at the Fermi level at low
temperatures of T = 0.1 K. The density of states derived from the tunelling
spectra can be decomposed into two energy-dependent parts with Eg = 21 meV and
Ed = 4.5 meV wide gaps, respectively.Comment: 9 pages incl. 13 figure
Solar-like oscillations with low amplitude in the CoRoT target HD 181906
Context: The F8 star HD 181906 (effective temperature ~6300K) was observed
for 156 days by the CoRoT satellite during the first long run in the centre
direction. Analysis of the data reveals a spectrum of solar-like acoustic
oscillations. However, the faintness of the target (m_v=7.65) means the
signal-to-noise (S/N) in the acoustic modes is quite low, and this low S/N
leads to complications in the analysis. Aims: To extract global variables of
the star as well as key parameters of the p modes observed in the power
spectrum of the lightcurve. Methods: The power spectrum of the lightcurve, a
wavelet transform and spot fitting have been used to obtain the average
rotation rate of the star and its inclination angle. Then, the autocorrelation
of the power spectrum and the power spectrum of the power spectrum were used to
properly determine the large separation. Finally, estimations of the mode
parameters have been done by maximizing the likelihood of a global fit, where
several modes were fit simultaneously. Results: We have been able to infer the
mean surface rotation rate of the star (~4 microHz) with indications of the
presence of surface differential rotation, the large separation of the p modes
(~87 microHz), and therefore also the ridges corresponding to overtones of the
acoustic modes.Comment: Paper Accepted to be published in A&A. 10 Pages, 12 figure
- …
