2,086 research outputs found

    Genomic signatures of population decline in the malaria mosquito Anopheles gambiae

    Get PDF
    Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets. To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima's D, and linkage disequilibrium (as measured by the population recombination parameter ρ). Linkage disequilibrium and ρ were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi. In the first simulations ρ changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100-1000 times further, and ρ is 100-1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi. These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions

    Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex

    Get PDF
    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences

    Trail laying during tandem-running recruitment in the ant Temnothorax albipennis

    Get PDF
    Tandem running is a recruitment strategy whereby one ant leads a single naïve nest mate to a resource. While tandem running progresses towards the goal, the leader ant and the follower ant maintain contact mainly by tactile signals. In this paper, we investigated whether they also deposit chemical signals on the ground during tandem running. We filmed tandem-running ants and analysed the position of the gasters of leaders and followers. Our results show that leader ants are more likely to press their gasters down to the substrate compared to follower ants, single ants and transporter ants. Forward tandem-run leaders (those moving towards a new nest site) performed such trail-marking procedures three times more often than reverse tandem leaders (those moving towards an old nest site). That leader ants marked the trails more often during forward tandem runs may suggest that it is more important to maintain the bond with the follower ant on forward tandem runs than on reverse tandem runs. Marked trails on the ground may serve as a safety line that improves both the efficiency of tandem runs and their completion rates. © 2014 Springer-Verlag Berlin Heidelberg

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    ‘Working with the media taught us a lot’: Understanding The Guardian’s Katine initiative

    Get PDF
    One of the more important ventures in the world of media and development over the past decade has been The Guardian newspaper’s ‘Katine’ project in Uganda. The newspaper, with funding from its readers and Barclays Bank, put more than 2.5 million pounds into a Ugandan sub-county over the course of 4 years. The project was profiled on a dedicated Guardian microsite, with regular updates in the printed edition of the newspaper. In this article, I look at the relationship that developed between journalists and the non-governmental organisation and show that the experience was both disorienting and reorienting for the development project that was being implemented. The scrutiny of the project that appeared on the microsite disoriented the non-governmental organisation, making its work the subject of public criticism. The particular issues explored by journalists also reoriented what the non-governmental organisation did on the ground. I also point to the ways the relationship grew more settled as the project moved along, suggesting the amount of work that sometimes goes into what is often characterised as the relatively uncritical relationship between journalists and non-governmental organisations

    Novel epigenetic clock for fetal brain development predicts prenatal age for cellular stem cell models and derived neurons

    Get PDF
    Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain cohorts. We applied the FBC to DNA methylation data from iPSCs and embryonic stem cells and their derived neuronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular model of age-related diseases

    IgE sensitisation in relation to flow-independent nitric oxide exchange parameters

    Get PDF
    BACKGROUND: A positive association between IgE sensitisation and exhaled NO levels has been found in several studies, but there are no reports on the compartment of the lung that is responsible for the increase in exhaled NO levels seen in IgE-sensitised subjects. METHODS: The present study comprised 288 adult subjects from the European Community Respiratory Health Survey II who were investigated in terms of lung function, IgE sensitisation (sum of specific IgE), smoking history and presence of rhinitis and asthma. Mean airway tissue concentration of NO (Caw(NO)), airway transfer factor for NO (Daw(NO)), mean alveolar concentration of NO (Calv(NO)) and fractional exhaled concentration of NO at a flow rate of 50 mL s(-1 )(FE(NO 0.05)) were determined using the extended NO analysis. RESULTS: IgE-sensitised subjects had higher levels (geometric mean) of FE(NO 0.05 )(24.9 vs. 17.3 ppb) (p < 0.001), Daw(NO )(10.5 vs. 8 mL s(-1)) (p = 0.02) and Caw(NO )(124 vs. 107 ppb) (p < 0.001) and positive correlations were found between the sum of specific IgE and FE(NO 0.05), Caw(NO )and Daw(NO )levels (p < 0.001 for all correlations). Sensitisation to cat allergen was the major determinant of exhaled NO when adjusting for type of sensitisation. Rhinitis and asthma were not associated with the increase in exhaled NO variables after adjusting for the degree of IgE sensitisation. CONCLUSION: The presence of IgE sensitisation and the degree of allergic sensitisation were related to the increase in airway NO transfer factor and the increase in NO concentration in the airway wall. Sensitisation to cat allergen was related to the highest increases in exhaled NO parameters. Our data suggest that exhaled NO is more a specific marker of allergic inflammation than a marker of asthma or rhinitis
    corecore