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Abstract 

Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular 
model in the research of the central nervous system. However, it is unknown how well they capture age-associated 
processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian develop-
ment. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that 
correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted 
epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal 
brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more 
precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts 
across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain 
cohorts. We applied the FBC to DNA methylation data from iPSCs and embryonic stem cells and their derived neu-
ronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal 
age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are 
still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing 
epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular 
model of age-related diseases.
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Introduction
Induced pluripotent stem cells (iPSCs) offer a unique 
cellular system to investigate disease in human-derived 
cells. iPSCs are obtained by treating skin or blood cells 
with a set of core pluripotency transcription factors that 
reprogram the cells to a pluripotent state [1]. Established 
iPSC lines have the capacity to be further differentiated 
into specific cell types, including neurons, when treated 
with the appropriate factors [2–4]. This is of particular 
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interest for neuroscience, as the only alternative cellular 
model for human neurons are immortalized cell lines. 
Because immortalized cell lines retain some physiological 
properties of the cancerous cells they were derived from 
[5] they do not fully recapitulate the neuronal pheno-
type. iPSC-derived neurons (iPSC-neurons), on the other 
hand, express appropriate morphological and neurophys-
iological properties of neurons and, when  subjected to 
distinct  differentiation protocols, they can be differenti-
ated into a wide range of specific neuronal subtypes [6]. 
iPSCs and their neuronal derivatives have been widely 
used to research disorders of the central nervous sys-
tem, including developmental disorders such as autism 
and schizophrenia and age-related diseases such as Alz-
heimer’s disease (AD) and Parkinson’s disease. However, 
the extent to which iPSCs and especially iPSC-neurons 
capture age-associated processes is not known, which is 
fundamental to the study of age-related diseases. Of spe-
cific relevance is the fact that pluripotent cells only occur 
during the early stages of mammalian development and 
the effect of differentiation from iPSCs towards neurons 
on the developmental or aging trajectory of the cellular 
model [7] has yet to be adequately profiled.

Epigenetic mechanisms, such as DNA methylation 
(DNAm), are chemical processes that stably regulate 
gene expression, and while they are sensitive to envi-
ronmental stimuli they also underpin key developmen-
tal processes [8–10]. There has been much interest and 
success in capitalizing on these patterns of epigenetic 
variation to derive individual age predictions from a bio-
logical sample. Age predictors based on DNAm, known 
as “epigenetic clocks” or “DNAm clocks”, are widely used 
to predict the “epigenetic age” of a sample. Epigenetic 
age, defined here as age predicted by an epigenetic clock, 
correlates strongly with chronological age, albeit not per-
fectly, and it has been hypothesized that the deviations 
from this prediction, referred to as age acceleration, are 
meaningful in the context of disease [11, 12]. The most 
well-known epigenetic clock is the Horvath multi-tissue 
clock (MTC) which was developed using a large num-
ber of samples (n > 8000) from 51 different tissues and 
cell types [13]. Overall, the MTC generates reliable pre-
dictions of chronological age for most sample-types, 
although there are potential biases when using Horvath’s 
clock in samples derived from certain tissues, especially 
the brain [14, 15]. To this end, a number of new DNAm 
clocks have been developed for specific tissue types, 
including whole blood [16] and cortex [14], which dem-
onstrate more accurate predictions within the speci-
fied tissue. A less established refinement of epigenetics 
clocks is the application to specific developmental stages, 
with prenatal samples excluded or underrepresented in 
most training datasets. Recently, clocks were developed 

to predict gestational age (GA) of newborns, derived 
using pre- and perinatal DNAm data from blood sam-
ples [17] or placental samples [18]. While existing epige-
netic clocks have been shown to accurately predict age 
in either postnatal brain samples (predominantly middle 
and older age) or non-brain prenatal samples, these tools 
have not been thoroughly tested on prenatal brain sam-
ples, and it is unknown whether they are able to delineate 
the earliest stages of brain development.

Previous analysis applying the MTC to DNAm data 
generated from iPSCs and their corresponding primary 
cells from adult donors found that the induction of pluri-
potency reversed the aging process, predicting the epige-
netic age of iPSCs to be close to zero (i.e. birth) but still 
postnatal  [13]. As human pluripotent cells only occur 
during prenatal development, we hypothesize that exist-
ing clocks are not sensitive enough to accurately predict 
iPSCs at prenatal developmental stages. The inability to 
accurately estimate age during this crucial stage of neu-
rodevelopment limits our ability to profile changes in 
epigenetic age induced by the differentiation of iPSCs 
into specific cell-types using already established DNAm 
clocks. Here we present a novel DNAm clock developed 
using prenatal brain samples that accurately predicts 
fetal age, outperforming other DNAm clocks in neu-
rodevelopmental samples. We then apply our clock to 
iPSCs, iPSC-derived neuronal progenitor cells (NPCs) 
and iPSC-derived neurons, as well as in other cellular 
stem cell models and derived neuronal cells, to character-
ize the epigenetic age of these cellular models before and 
during the differentiation process.

Methods
All statistical analyses were performed using R version 
3.5.2 (https://​www.r-​proje​ct.​org/) [19].

Development of the fetal brain clock (FBC)
Description of fetal brain samples
To develop and profile the performance of the fetal 
brain clock (FBC), we collated a dataset of 258 fetal 
brain samples (see Additional file  1: Table  S1) of which 
194 were processed by our group at the University of 
Exeter as described previously [20] and 64 were a subset 
(age < 0 years) of a publicly available dataset downloaded 
from the Gene Expression Omnibus (GEO; https://​www.​
ncbi.​nlm.​nih.​gov/​geo/; GSE74193) [21]. Of the samples 
processed in Exeter, 154 overlap with  those included in 
[20] following additional outlier filtering by principal 
component analysis, where DNAm was quantified using 
the Illumina 450 K DNA methylation array. The other 40 
samples represent additional samples where DNAm was 
quantified using the Illumina EPIC DNA methylation 
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array using a standard protocol as previously described 
[14].

Data pre‑processing and quality control
All datasets for which raw data was available were pre-
processed following a standard quality control (QC) and 
normalization pipeline as described before [14] using 
either the R package wateRmelon [22] or bigmelon [23]. 
Briefly, samples with low signal intensities or incom-
plete bisulfite conversion were excluded prior to apply-
ing the pfilter() function from the wateRmelon package, 
excluding samples with > 1% of probes with a detection P 
value > 0.05 and probes with > 1% of samples with detec-
tion P value > 0.05. This was followed by the exclusion 
of probes known to be affected by SNPs or known to 
cross-hybridize [24]. QC was finished by quantile nor-
malization using the dasen() function of the packages 
wateRmelon or bigmelon [22, 23]. To harmonize the age 
variable across datasets, age was converted into days 
post-conception (dpc), as it represents the most precise 
unit of age available across the datasets. Where age was 
provided as weeks post-conception it was transformed 
to days post-conception by dividing by 7, and where age 
was reported in (negative) years it was transformed to 
days post-conception by multiplying by 365 and adding 
280. Of note, a few samples (15 out of 258) are actually 
defined as embryonic (GA < 63 dpc) and not fetal.

Fetal brain clock development
To create two separate datasets for the purpose of train-
ing and testing the FBC, 75% of the samples from each 
dataset were randomly assigned into a training dataset 
(n = 193, age range = 37–184 dpc, age median = 99 dpc), 
while the remaining 25%  were included in the testing 
dataset (n = 65, age range = 23–153 dpc, age median = 99 
dpc) (Additional file  3: Figure S1, Additional file  1: 
Table S1). There was no overlap in samples between the 
training and testing dataset. To simplify the FBC devel-
opment, only probes available in all samples after QC 
were taken forward (n = 385,069 probes). To develop the 
fetal brain clock, we applied an elastic net (EN) regres-
sion model, using the approach described by Horvath 
[13], regressing chronological age against DNAm level of 
all available probes. The EN algorithm selects a subset of 
DNA methylation probes that together produce the opti-
mal prediction of the outcome, in this case chronologi-
cal age, by combining ridge and LASSO (Least Absolute 
Shrinkage and Selection Operator) regression. Briefly, 
ridge regression penalizes the sum of squared coefficients 
while LASSO penalizes the sum of the absolute values of 
coefficients. EN is a combination of both methods, where 
the user specifies the extent of the mixing of the two 
methods as a number between 0 and 1, in our application 

this was set to 0.5 [25]. EN was implemented with the R 
package GLMnet [26]. The shrinkage parameter lambda 
was calculated using tenfold cross-validation on the data, 
which resulted in a lambda of 3.27.

Statistical evaluation of FBC performance
To profile the performance of the FBC, we additionally 
tested three established DNAm clocks: Horvath’s multi-
tissue clock (MTC) [13], Knight’s Gestational Age clock 
(GAC) [17] and Lee’s Control Placental epigenetic clock 
(CPC) [18]. The clocks were applied using the agep() 
function of the wateRmelon package [22], where the 
default estimates the MTC and other clocks (here the 
GAC and CPC) can be estimated by providing the neces-
sary coefficient and intercept values. The predictive accu-
racy of each clock was profiled in each dataset by two 
measures: Pearson’s correlation coefficient with reported 
chronological age and root mean squared error (RMSE). 
To investigate potential effects of sex on the predicted 
epigenetic age, linear models were fitted in the testing 
and validation datasets with FBC predicted epigenetic 
age as the dependent variable, chronological age and sex 
as main effects and an interaction between chronological 
age and sex.

Validation of the fetal brain clock (FBC) in additional  
datasets (fetal and adult cortex)
To further test the FBC, we used data from 96 addi-
tional fetal brain samples currently being assessed by our 
group (unpublished data), none of which overlapped with 
either the training or testing data described above, with 
DNAm quantified using the Illumina EPIC DNA meth-
ylation array. QC and normalization were performed 
as described above. We also included data from 33 fetal 
brain  samples from two publicly available datasets on 
GEO (GSE116754 and GSE90871) [27, 28], where DNAm 
was quantified using the Illumina 450  K DNA methyla-
tion array. Pre-processing and QC for the publicly avail-
able datasets was not performed in our lab as no raw 
data was available. Age of all samples was converted to 
dpc as described above. The combined validation data-
set has an age range of 42–280 dpc with   a median of 
112 dpc (Additional file  3: Figure S1, Additional file  1: 
Table  S1). To evaluate the performance of the DNAm 
clocks in adult brain samples we utilized data from the 
Brains for Dementia Research (BDR) cohort previously 
generated by our group [14]. Briefly, these data consist of 
1221 samples from 632 donors (age range 41–104 years, 
median = 84  years), with DNA extracted from the pre-
frontal cortex (n = 610) and occipital cortex (n = 611). 
DNAm was quantified using the Illumina EPIC DNAm 
array, and were pre-processed using a standard QC pipe-
line as described in [14].
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Statistical evaluation of FBC performance
The predictive accuracy of the FBC was profiled in each 
dataset by two measures: Pearson’s correlation coefficient 
with reported chronological age and root mean squared 
error (RMSE).

Testing of Fetal Brain Clock (FBC) in cellular samples
iPSC—neuron samples
Five different DNAm datasets generated  from  iPSCs, 
iPSC-derived NPCs and iPSC-derived neurons were 
used to characterize epigenetic age of the neuronal cell 
model, details of which can be found in Additional file 1: 
Table S1. For two of these datasets (Imm, Price) DNAm 
data was generated by our lab in Exeter, where DNAm 
was quantified using the Illumina EPIC DNA meth-
ylation array. These were supplemented by three pub-
licly available datasets, downloaded from GEO (Nazor, 
GSE31848, Sultanov, GSE105093, and Fernández-San-
tiago, GSE51921) consisting of Illumina 450  K DNAm 
array data [3, 4, 29]. References describing the origin of 
cell lines and the different methods used for cell culture 
and differentiation are listed in Additional file 1: Table S1. 
Pre-processing and QC for the Nazor and Fernández-
Santiago datasets was not performed in our lab as no raw 
data was available.

iPSC—motor neuron samples
A dataset comprised of 23 cellular samples with two iPSC 
samples and 21 derived motor neurons was generated by 
our lab, with DNAm quantified using the Illumina EPIC 
DNAm array (Additional file  1: Table  S1). These data 
were QC’d following the pipeline described above.

ESC – neuron samples
Two publicly available cellular datasets with NPCs and 
neurons derived from embryonic stem cells (ESCs) 
were downloaded from GEO (Nazor, GSE31848, Kim 
GSE38214) [29, 30]. Both datasets consist of data quan-
tified using the Illumina 450  K DNAm array. Pre-pro-
cessing and QC for both ESC – neuron datasets were not 
performed in our lab as no raw data was available.

Statistical comparison of cellular states
The FBC was applied to DNAm data for all cellular sam-
ples available. To test for differences in predicted epige-
netic age between cell stages within each dataset, either 
two sample t-tests or ANOVA followed by Tukey HSD 
multiple comparison (when three cell stages were avail-
able), were used. To combine results across all iPSC—
neuron datasets, a mixed effects linear model was fitted 
with predicted epigenetic age as the dependent variable, 
a fixed effect for cell stage represented as two dummy 
variables contrasting NPCs vs iPSCs and iPSC-neurons 

vs iPSCs as and a random effect (i.e. random intercept) 
for dataset.

Results
Fetal brain clock outperforms existing DNAm clocks 
at predicting age of prenatal brain samples
We applied EN regression to genome wide DNAm data 
from a subset of available prenatal brain samples (n = 193; 
Additional file  1: Table  S1 and Additional file  3: Figure 
S1) to develop the fetal brain clock (FBC). 107 DNAm 
probes were assigned non-zero coefficients and there-
fore were selected as the basis of the FBC (Additional 
file 3: Table S2). We found no overlap in the DNAm sites 
selected for the FBC and DNAm sites used in the other 
established clocks tested in our analysis. Testing the FBC 
clock in an independent test dataset of fetal brain sam-
ples (Additional file  1: Table  S1 and Additional file  3: 
Figure S1) to evaluate its performance we found a strong 
linear relationship between chronological and predicted 
prenatal age (r = 0.80; Fig.  1A) with the majority of 
samples predicted within 15  days of their actual chron-
ological age (RMSE = 14.84 dpc). To benchmark the per-
formance of our clock, we compared it to three existing 
DNAm clocks: Horvath’s MTC [13], Knight’s GAC [17] 
and Lee’s CPC [18]. These clocks were selected as they 
represent either the most well-established algorithm 
with the broadest applicability (MTC) or were specifi-
cally developed to predict pre- and perinatal gestational 
ages, albeit in non-brain tissue (GAC and CPC). Of note, 
the MTC only predicted 27 fetal brain samples (41.2%) 
as prenatal (dpc < 280) with a low correlation between 
chronological and predicted age (rMTC = 0.06). This cor-
relation is much lower than those reported in the origi-
nal manuscript when Horvath tested the clock in adult 
samples [13], highlighting the challenges with extrapolat-
ing clocks to samples which were not well represented in 
model development. By comparison, the GAC and CPC 
perform better than the MTC, although they have smaller 
correlation coefficients (rGAC​ = 0.52 and rCPC = 0.76) and 
are associated with a larger error (RMSEGAC​ = 21.32 and 
RMSECPC = 60.08) than the FBC. Interestingly, while the 
predictions from the GAC are more precise, it is not as 
effective at ranking the samples by age as the CPC. Taken 
together, these results demonstrate that our novel FBC 
outperforms existing clocks at predicting age in fetal 
brain samples, and therefore is the optimal tool available 
to profile the epigenetic age in models of neuronal devel-
opment. When applying clocks to the training data, the 
three established clocks produce similar correlations and 
RMSEs as in the testing data. As expected, the predic-
tions of the FBC in the training data are more accurate 
than the predictions in the testing data, reflecting overfit-
ting of the model (Additional file 4: Figure S2).
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We further tested the FBC in an independent prenatal 
brain dataset (n = 129, Additional file 1: Table S1), find-
ing a stronger linear relationship between chronologi-
cal age and predicted epigenetic age (r = 0.87, Fig.  2A) 
than in the test dataset (Fig. 1A), but a larger error rate 
(RMSE = 26.36 dpc). On closer inspection, we observed 
that this error is mainly driven by a subset of older 
samples (> 185dpc, Fig.  2A) in the validation dataset 
(Additional file  1: Table  S1), that are older than any of 
the samples in the training data (Fig. 2). If we limit our 

analysis to the samples whose chronological age overlaps 
the range of ages used in the training data (37—185 dpc; 
n = 125) then the error is decreased to 18.94 dpc. The 
performance of the established clocks in the validation 
dataset is also comparable to their performance in the 
testing dataset, with smaller correlations and higher error 
compared to the FBC and no sample with a predicted 
prenatal age by the MTC (Fig. 2B–D).

Given our previous finding of divergent, sex-specific 
age trajectories at multiple DNAm sites during prenatal 

Fig. 1  The Fetal Brain Clock (FBC) outperforms other DNAm clocks when applied to neurodevelopmental samples. Shown are scatterplots 
comparing chronological age (x-axis; days post-conception (dpc)) against predicted epigenetic age (y-axis; days post-conception) calculated using 
A Fetal Brain Clock (FBC), B Horvath’s Multi Tissue Clock (MTC), C Knight’s Gestational Age Clock (GAC), and D Lee’s Control Placental Clock (CPC) in 
our fetal brain testing dataset (n = 65, age range = 23–153 dpc). The black line indicates the identity line of chronological and predicted epigenetic 
age and represents a perfect prediction. Two statistics were calculated to evaluate the precision of each DNAm clock: Pearson’s correlation 
coefficient (r) and the root mean squared error (RMSE)
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development [20], we tested whether the FBC performed 
differently between males and females in our testing 
dataset. Although this analysis initially indicated a signifi-
cant difference in the correlation with age between males 
and females (PSex*Age = 0.0007), this relationship is likely 
driven by outliers. Indeed, a sensitivity analysis exclud-
ing the two samples with youngest and oldest predicted 
ages produced a non-significant result (PSex*Age = 0.081). 
Repeating the analysis in the validation dataset we find 
a small significant effect of sex on age in the full dataset 

(PSex*Age = 0.00179), which was driven by the samples 
older than 185 dpc, all of them being female. As samples 
older than 185 dpc produce inaccurate predictions, they 
could unfairly bias the analysis of potential sex effects 
and after removing the them from the analysis, there is 
no longer a significant effect of sex on the accuracy of the 
clock (PSex*Age = 0.95).

Fig. 2  Validation of the Fetal Brain Clock in an independent fetal brain dataset. Shown are scatterplots comparing chronological age (x-axis; days 
post-conception (dpc)) against predicted epigenetic age (y-axis; days post-conception) calculated using A Fetal Brain Clock (FBC), B Horvath’s Multi 
Tissue Clock (MTC), C Knight’s Gestational Age Clock (GAC), and D Lee’s Control Placental Clock (CPC) on data from an independent validation 
dataset (n = 129, age range = 42–280 dpc). Two statistics were calculated to evaluate the precision of each DNAm clock: Pearson’s correlation 
coefficient (r) and the root mean squared error (RMSE). The dashed line in A indicates a chronological age of 185 dpc, which is the oldest age in the 
training dataset of the FBC
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Fetal and gestational age clocks are not able to predict 
adult ages in adult brain tissue
All four clocks were additionally tested in an adult 
brain DNAm dataset (Additional file  5: Figure S3). As 
expected, the FBC performs poorly in this sample set, 
with all samples predicted as prenatal albeit at the older 
end of the spectrum of ages in the training data (range 
of predicted ages 115–170 dpc). In contrast the MTC 
performs the best (rMTC = 0.65, RMSEMTC = 20.11 years) 
as it is the only clock we considered that was developed 
using adult samples. As with the FBC, the GAC and 
CPC fail to produce predictions of postnatal age, again 

reflecting the fact that they were also constructed using 
data from pre- or perinatal samples.

Fetal brain clock captures differences in differentiation 
of cellular stem cell models towards neurons
Having demonstrated that our novel FBC is the optimal 
clock to profile age in prenatal brain samples, we applied 
it to DNAm data from multiple cellular studies to char-
acterize epigenetic age in iPSCs and ESCs differentiating 
towards cortical neurons. All samples were estimated 
to have a fetal epigenetic age, regardless of cell stage, 
cell line origin or differentiation protocol. Furthermore, 

Fig. 3  Comparisons of predicted epigenetic age using the Fetal Brain Clock (FBC) between cellular models throughout differentiation states. 
A Boxplots comparing the distribution of predicted epigenetic age (days post-conception) in iPSCs and their derived NPCs and neurons, 
where each panel represents a different dataset. P values of Tukey HSD corrected ANOVA for the Imm dataset and two-sample t-tests for Price, 
Nazor, Fernández-Santiago and Sultanov datasets are given. F. -S. = Fernández-Santiago. B Boxplots of predicted epigenetic age calculated using the 
FBC where samples from the five iPSC-Neuron datasets are grouped by cell stage (n = 82, 30 iPSCs, 4 NPCs, 48 iPSC-neurons) and colored by dataset. 
P values from mixed effects model are given for differences between iPSCs and NPCs (non-significant) and iPSC and neurons. C Boxplots comparing 
the predicted epigenetic age in a cohort with iPSCs and derived motor neurons. P values of two-sample t-test are given. D Boxplots of predicted 
epigenetic age by FBC applied on two datasets including ESCs and their derived NPCs and neurons. P values of Tukey HSD corrected ANOVA for the 
Kim dataset and two-sample t-tests for the Nazor dataset are given
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they were predicted to have a “young” fetal age (Fig.  3) 
with the iPSCs having a mean predicted age of 75.6 dpc 
(SD = 6.9 dpc; n = 59), the iPSC-NPCs having a mean 
age of 79.1 dpc (SD = 11.0 dpc; n = 8) and iPSC—neu-
rons having a mean predicted age of 83.2 dpc (SD = 8.87 
dpc; n = 31). To test whether the differentiation process 
had an effect on the epigenetic age predictions from the 
FBC we compared the estimated ages between iPSCs and 
neurons, observing significant differences in all datasets 
(Fig.  3A), with neurons being older than iPSCs. For the 
Imm dataset, which included proliferative NPCs as well 
as postmitotic neurons, we additionally found a sig-
nificant difference between NPCs and iPSC-neurons 
(Δmean = 20.0 dpc, P = 0.00039), but not between iPSCs 
and NPCs (Δmean = 10.0 dpc, P = 0.24). In contrast, in 
the Nazor dataset, which only included iPSCs and NPCs, 
we did find a significant difference in predicted epige-
netic age between iPSCs and NPCs (Δmean = 10.5 dpc, 
P = 0.00734). Meta-analyzing the data across the five 
studies including iPSCs and iPSC-derived NPCs and 
neurons, we found that iPSC-neurons were predicted to 
have a significantly advanced epigenetic age compared to 
iPSCs of about 2 weeks (Δmean = 13.35 dpc, P = 2.13e−11) 
but no significant difference was observed between iPSC 
and NPCs (Δmean = 4.33 dpc, P = 0.11).

As well as cortical neurons, we applied the FBC to 
DNAm data from a study on iPSCs and differenti-
ated motor neurons. The motor neurons had a mean 
predicted epigenetic age of 79.82 dpc (SD = 6.82 dpc) 
which is slightly younger than the cortical neurons 
(meaniPSC-neurons = 83.2 dpc). When comparing the pre-
dicted ages between the motor neurons and the iPSCs 
they were originally derived from, we did not observe 
a significant difference (Δmean = 2.94 dpc, P = 0.825, 
Fig. 3C).

Finally, we tested for effects on epigenetic age through 
the process of differentiation from embryonic stem cells 
(ESCs) to NPCs and neurons, using two publicly avail-
able DNAm datasets (Additional file 1: Table S1). In both 
datasets we observed a significant increase of predicted 
epigenetic age from ESC to NPC (Fig. 3D). Additionally, 
in the Kim dataset, we were able to compare ESC derived 
neurons, and found a significant difference between ESCs 
and neurons (Δmean = 55.42 dpc, P = 0.00015, Fig.  3D) 
but no change in epigenetic age from NPC to neuron 
(Δmean = − 0.58 dpc, P = 0.95).

Discussion
In this study we established a novel epigenetic clock, the 
fetal brain clock (FBC), to characterize the earliest stages 
of human neurodevelopment, and applied it to determine 
the epigenetic age of iPSCs and ESCs and their derived 
NPCs and neurons. Epigenetic clocks have been widely 

applied, including for the analysis of both in-vivo and 
in-vitro models of aging, where they have been shown 
to correlate with hallmarks of the aging process [31–
34]. However, their application has predominantly been 
focused on studies involving adult samples. Given the 
lack of fetal brain samples in the development of existing 
DNAm clocks prior to this study, there was no optimal 
method for estimating the age of fetal brain samples from 
DNAm data, limiting the ability to characterize iPSC-
derived neuronal models or other models of neuronal 
development. We show that, in two non-overlapping 
independent validation datasets, the FBC generates pre-
dictions that correlate strongly with chronological age in 
prenatal brain samples. Furthermore, it outperforms both 
a pan-tissue epigenetic clock (Horvath’s MTC), and epi-
genetic clocks focused on the same developmental stage, 
but based on DNAm profiled in different tissues (Knight’s 
GAC and Lee’s CPC) [13, 17, 18]. The FBC outperforms 
these clocks using both correlation and error statistics 
(RMSE), indicating that it is not only better at ranking 
the samples, but it generates more precise estimates.

As the FBC was predominantly trained on second tri-
mester brain samples, with some first trimester samples, 
it made less accurate predictions when applied to third 
trimester samples and performed extremely poorly in 
adult brain samples. Altogether, this reinforces the find-
ings of previous studies that have also demonstrated that 
the applicability of DNAm clocks is dependent on the 
characteristics of the data they were trained on, with the 
tissue and age range of the training samples of particular 
relevance [14, 15]. More specifically, we note that while 
the accuracy of a DNAm clock is typically decreased in 
tissues not represented in its training data, clocks are 
completely limited to predicting ages represented in 
the training data. If the true age of a tested sample lies 
outside of the age range of the training data, the clock 
is unable to provide an appropriate prediction with the 
magnitude of inaccuracy increasing as the true age of the 
sample becomes more extreme suggesting that, in gen-
eral, age range is more critical than tissue when training 
a clock.

Previous epigenetic clocks have shown that the pre-
dicted epigenetic age of iPSCs is significantly lower than 
the predicted age of  cells from which they were  repro-
grammed and  also the chronological age of the donor 
at sample donation [13]. The induction of pluripotency 
reprograms the epigenome, including at the loci used 
in the clock algorithm, ultimately leading to a younger 
predicted epigenetic age. However, in these analyses the 
predicted ages remain postnatal, which is unexpected 
as human pluripotent cells only occur during the early 
stages of human development and hence we hypoth-
esized that, with an adequately calibrated clock, iPSCs 
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would be expected to be estimated as being early fetal. 
Applying the FBC to five datasets of iPSCs and iPSC-
derived NPCs and neurons, we found this to be the case. 
iPSCs were estimated as having a mean age of 75.6 dpc, 
fitting our hypothesis that they represent first trimester 
developmental stages. These results align with studies 
that have reported rejuvenation effects on the transcrip-
tome, telomeres and mitochondria of iPSCs following 
reprogramming [35–37]. In addition, we profiled the 
effect on predicted epigenetic age following the differen-
tiation of iPSCs towards neurons reporting a small but 
significant aging effect of 13 dpc. This developmental 
stage coincides with fetal neurogenesis [38] and suggests 
that while differentiation does induce an aging process, it 
does not accelerate iPSC-neurons to a postnatal state. Of 
note, Mertens and colleagues found that while iPSCs lose 
age related transcriptomic signatures, induced neurons 
(iNs; neurons directly reprogrammed from fibroblasts) 
keep their specific aging signatures [36]. Therefore, it 
would be interesting to apply our FBC to iNs, iPSCs, 
iPSC-neurons and their corresponding somatic tissues to 
verify whether age associated DNAm differences are also 
preserved in iNs. In addition, we tested the FBC on ESC 
and ESC-derived neurons. Although our sample size was 
small, the results also suggested that the differentiation 
process induced a small aging effect as the ESCs were dif-
ferentiated into neurons. Altogether, our results indicate 
that iPSC-neurons may have limited utility for the study 
of age-related brain diseases, like Alzheimer’s disease or 
other dementias, as many molecular processes related to 
an aging phenotype may not be recapitulated.

Epigenetic clocks have been utilized for a wide range of 
applications [34], with a predominant focus on exploring 
the biological meaning of deviations between chronologi-
cal age and epigenetic age. As we have shown the cause of 
this deviation may result from the use of an inappropri-
ate clock, therefore the FBC is a critical tool for assessing 
whether epigenetic age acceleration during neurode-
velopment is associated with later life outcomes such as 
disease or in utero exposures (such as maternal smok-
ing). The FBC also has utility for determining the specific 
developmental stage of  a model of neurodevelopment 
recapitulates (e.g. brain organoids or cellular neuronal 
models) and how different exposures or genetic back-
grounds may influence neurodevelopmental processes 
and aging.

While a strength of our study is the development of a 
bespoke clock to optimally profile the epigenetic age of 
human fetal brain samples, due to the training data pre-
dominantly containing second trimester samples, the 
FBC is most accurate for this period of neurodevelop-
ment. We are confident that the FBC has correctly pre-
dicted fetal epigenetic ages for the cell lines included in 

our analysis as the age predictions of the  vast majority 
of the stem cell models and their derived neurons were 
less than the median age in the training data. This indi-
cates that the predictions are not confounded by satura-
tion of the coefficients. Although we took advantage of 
previously published data to include all available samples 
appropriate for addressing our research questions, some 
of the group sizes, in particular the NPCs, were small and 
we were not powered to detect significant aging effects as 
a result of differentiation from iPSCs to NPCs in all data-
sets. Furthermore, across the different studies there was 
variation in the estimated prenatal age of each cell state; 
we hypothesize that these differences results from subtle 
variation in differentiation protocols, timepoints of cell 
collection or the definition of NPCs within the respective 
studies [39]. Despite this, we are confident in the conclu-
sions we report as these study specific effects were con-
trolled for in our analysis.

In summary, we demonstrate that established DNAm 
clocks struggle to capture changes in epigenetic age 
during neurodevelopment and for precise predictions 
a bespoke clock trained on fetal brain data is required. 
Using the FBC to assess the epigenetic age of iPSCs and 
differentiated neurons, we found that iPSCs and derived 
NPCs and neurons reflect early prenatal developmental 
stages. Our findings question the suitability of the iPSC-
neurons for the study of aging associated processes.
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