77 research outputs found
PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses
PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses. PartitionFinder 2 is substantially faster and more efficient than version 1, and incorporates many new methods and features. These include the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, new output formats to facilitate interoperability with downstream software, and many new models of molecular evolution. PartitionFinder 2 is freely available under an open source license and works on Windows, OSX, and Linux operating systems. It can be downloaded from www.robertlanfear.com/partitionfinder. The source code is available at https://github.com/brettc/partitionfinder.RML was supported by the Australian Research Council.
AMW was supported by NSF DEB-1256993. This work was supported by the Macquarie University Genes to Geoscience
center
Gill Structure Linked to Ecological and Species Diversification in a Clade of Caddisflies
Streams represent a special case of directional environmental gradients where ecological opportunity for diversification may be associated with upstream and downstream dispersal into habitats that differ in selective pressures. Temperature, current velocity and variability, sediment erosion dynamics and oxygen saturation are key environmental parameters that change in predictable ways from springs to river mouth. Many aquatic insects occupy specific longitudinal regions along these gradients, indicating a high degree of adaptation to these specific environmental conditions. In caddisflies, the evolution of tracheal gills in larval and pupal stages may be a major driver in oxygen uptake efficiency and ecological diversification. Here we study the evolution of larval gill structure in the Rhyacophila vulgaris species group using phylogenomic methods. Based on anchored hybrid enrichment, we sequenced 97 kbp of data representing 159 independent nuclear protein coding gene regions to infer the phylogeny of the R. vulgaris species group, whose species exhibit both high diversity of gill types and varied longitudinal preferences. We find that the different gill types evolved independently as derived characters in the genus and that gill structure is linked to the longitudinal habitat preference, thereby serving as a possible ecological key innovation in the R. vulgaris group
Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars
Red giants are evolved stars that have exhausted the supply of hydrogen in
their cores and instead burn hydrogen in a surrounding shell. Once a red giant
is sufficiently evolved, the helium in the core also undergoes fusion.
Outstanding issues in our understanding of red giants include uncertainties in
the amount of mass lost at the surface before helium ignition and the amount of
internal mixing from rotation and other processes. Progress is hampered by our
inability to distinguish between red giants burning helium in the core and
those still only burning hydrogen in a shell. Asteroseismology offers a way
forward, being a powerful tool for probing the internal structures of stars
using their natural oscillation frequencies. Here we report observations of
gravity-mode period spacings in red giants that permit a distinction between
evolutionary stages to be made. We use high-precision photometry obtained with
the Kepler spacecraft over more than a year to measure oscillations in several
hundred red giants. We find many stars whose dipole modes show sequences with
approximately regular period spacings. These stars fall into two clear groups,
allowing us to distinguish unambiguously between hydrogen-shell-burning stars
(period spacing mostly about 50 seconds) and those that are also burning helium
(period spacing about 100 to 300 seconds).Comment: to appear as a Letter to Natur
Whole genome analysis of clouded leopard species reveals an ancient divergence and distinct demographic histories
Similar to other apex predator species, populations of mainland (Neofelis nebulosa) and Sunda (Neofelis diardi) clouded leopards are declining. Understanding their patterns of genetic variation can provide critical insights on past genetic erosion and a baseline for understanding their long-term conservation needs. As a step toward this goal, we present draft genome assemblies for the two clouded leopard species to quantify their phylogenetic divergence, genome-wide diversity, and historical population trends. We estimate that the two species diverged 5.1 Mya, much earlier than previous estimates of 1.41 Mya and 2.86 Mya, suggesting they separated when Sundaland was becoming increasingly isolated from mainland Southeast Asia. The Sunda clouded leopard displays a distinct and reduced effective population size trajectory, consistent with a lower genome-wide heterozygosity and SNP density, relative to the mainland clouded leopard. Our results provide new insights into the evolutionary history and genetic health of this unique lineage of felids
Fast core rotation in red-giant stars revealed by gravity-dominated mixed modes
When the core hydrogen is exhausted during stellar evolution, the central
region of a star contracts and the outer envelope expands and cools, giving
rise to a red giant, in which convection occupies a large fraction of the star.
Conservation of angular momentum requires that the cores of these stars rotate
faster than their envelopes, and indirect evidence supports this. Information
about the angular momentum distribution is inaccessible to direct observations,
but it can be extracted from the effect of rotation on oscillation modes that
probe the stellar interior. Here, we report the detection of non-rigid rotation
in the interiors of red-giant stars by exploiting the rotational frequency
splitting of recently detected mixed modes. We demonstrate an increasing
rotation rate from the surface of the star to the stellar core. Comparing with
theoretical stellar models, we conclude that the core must rotate at least ten
times faster than the surface. This observational result confirms the
theoretical prediction of a steep gradient in the rotation profile towards the
deep stellar interior.Comment: to appear as a Letter to Natur
A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins
Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin similar to 100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants
Lytic xylan oxidases from wood-decay fungi unlock biomass degradation
Wood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-ef-fective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we describe a new family of fungal lytic polysaccharide monooxygenases (LPMOs) prevalent among white-rot and brown-rot basidiomycetes that is active on xylans—a recalcitrant polysaccharide abundant in wood biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus substantially increase the efficiency of wood saccharification through oxida-tive cleavage of highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity advances our knowledge on the degradation of woody biomass in nature and offers an innovative solution for improving enzyme cocktails for biorefinery applications
Semaglutide and cardiovascular outcomes in patients with obesity and prevalent heart failure: a prespecified analysis of the SELECT trial
Background: Semaglutide, a GLP-1 receptor agonist, reduces the risk of major adverse cardiovascular events (MACE) in people with overweight or obesity, but the effects of this drug on outcomes in patients with atherosclerotic cardiovascular disease and heart failure are unknown. We report a prespecified analysis of the effect of once-weekly subcutaneous semaglutide 2·4 mg on ischaemic and heart failure cardiovascular outcomes. We aimed to investigate if semaglutide was beneficial in patients with atherosclerotic cardiovascular disease with a history of heart failure compared with placebo; if there was a difference in outcome in patients designated as having heart failure with preserved ejection fraction compared with heart failure with reduced ejection fraction; and if the efficacy and safety of semaglutide in patients with heart failure was related to baseline characteristics or subtype of heart failure. Methods: The SELECT trial was a randomised, double-blind, multicentre, placebo-controlled, event-driven phase 3 trial in 41 countries. Adults aged 45 years and older, with a BMI of 27 kg/m2 or greater and established cardiovascular disease were eligible for the study. Patients were randomly assigned (1:1) with a block size of four using an interactive web response system in a double-blind manner to escalating doses of once-weekly subcutaneous semaglutide over 16 weeks to a target dose of 2·4 mg, or placebo. In a prespecified analysis, we examined the effect of semaglutide compared with placebo in patients with and without a history of heart failure at enrolment, subclassified as heart failure with preserved ejection fraction, heart failure with reduced ejection fraction, or unclassified heart failure. Endpoints comprised MACE (a composite of non-fatal myocardial infarction, non-fatal stroke, and cardiovascular death); a composite heart failure outcome (cardiovascular death or hospitalisation or urgent hospital visit for heart failure); cardiovascular death; and all-cause death. The study is registered with ClinicalTrials.gov, NCT03574597. Findings: Between Oct 31, 2018, and March 31, 2021, 17 604 patients with a mean age of 61·6 years (SD 8·9) and a mean BMI of 33·4 kg/m2 (5·0) were randomly assigned to receive semaglutide (8803 [50·0%] patients) or placebo (8801 [50·0%] patients). 4286 (24·3%) of 17 604 patients had a history of investigator-defined heart failure at enrolment: 2273 (53·0%) of 4286 patients had heart failure with preserved ejection fraction, 1347 (31·4%) had heart failure with reduced ejection fraction, and 666 (15·5%) had unclassified heart failure. Baseline characteristics were similar between patients with and without heart failure. Patients with heart failure had a higher incidence of clinical events. Semaglutide improved all outcome measures in patients with heart failure at random assignment compared with those without heart failure (hazard ratio [HR] 0·72, 95% CI 0·60-0·87 for MACE; 0·79, 0·64-0·98 for the heart failure composite endpoint; 0·76, 0·59-0·97 for cardiovascular death; and 0·81, 0·66-1·00 for all-cause death; all pinteraction>0·19). Treatment with semaglutide resulted in improved outcomes in both the heart failure with reduced ejection fraction (HR 0·65, 95% CI 0·49-0·87 for MACE; 0·79, 0·58-1·08 for the composite heart failure endpoint) and heart failure with preserved ejection fraction groups (0·69, 0·51-0·91 for MACE; 0·75, 0·52-1·07 for the composite heart failure endpoint), although patients with heart failure with reduced ejection fraction had higher absolute event rates than those with heart failure with preserved ejection fraction. For MACE and the heart failure composite, there were no significant differences in benefits across baseline age, sex, BMI, New York Heart Association status, and diuretic use. Serious adverse events were less frequent with semaglutide versus placebo, regardless of heart failure subtype. Interpretation: In patients with atherosclerotic cardiovascular diease and overweight or obesity, treatment with semaglutide 2·4 mg reduced MACE and composite heart failure endpoints compared with placebo in those with and without clinical heart failure, regardless of heart failure subtype. Our findings could facilitate prescribing and result in improved clinical outcomes for this patient group. Funding: Novo Nordisk
The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2
Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701
The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life
DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life’s species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to
dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate
between ‘Barcode Index Numbers’ (BINs) and ‘species’ that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description. This article is part of the themed issue ‘From DNA barcodes to biomes’
- …