2,030 research outputs found

    Stem Cell Res

    Get PDF
    Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder of the liver metabolism due to functional deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). AGT deficiency results in overproduction of oxalate which complexes with calcium to form insoluble calcium-oxalate salts in urinary tracts, ultimately leading to end-stage renal disease. Currently, the only curative treatment for PH1 is combined liver-kidney transplantation, which is limited by donor organ shortage and lifelong requirement for immunosuppression. Transplantation of genetically modified autologous hepatocytes is an attractive therapeutic option for PH1. However, the use of fresh primary hepatocytes suffers from limitations such as organ availability, insufficient cell proliferation, loss of function, and the risk of immune rejection. We developed patient-specific induced pluripotent stem cells (PH1-iPSCs) free of reprogramming factors as a source of renewable and genetically defined autologous PH1-hepatocytes. We then investigated additive gene therapy using a lentiviral vector encoding wild-type AGT under the control of the liver-specific transthyretin promoter. Genetically modified PH1-iPSCs successfully provided hepatocyte-like cells (HLCs) that exhibited significant AGT expression at both RNA and protein levels after liver-specific differentiation process. These results pave the way for cell-based therapy of PH1 by transplantation of genetically modified autologous HLCs derived from patient-specific iPSCs

    Unprecedented atmospheric ammonia concentrations detected in the high Arctic from the 2017 Canadian wildfires

    Get PDF
    Abstract From 17-22 August 2017 simultaneous enhancements of ammonia (NH3), carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) were detected from ground-based solar absorption Fourier transform infrared (FTIR) spectroscopic measurements at two high-Arctic sites: Eureka (80.05°N, 86.42°W) Nunavut, Canada and Thule (76.53°N, 68.74°W), Greenland. These enhancements were attributed to wildfires in British Columbia and the Northwest Territories of Canada using FLEXPART back-trajectories and fire locations from Moderate Resolution Imaging Spectroradiometer (MODIS) and found to be the greatest observed enhancements in more than a decade of measurements at Eureka (2006-2017) and Thule (1999-2017). Observations of gas-phase NH3 from these wildfires illustrates that boreal wildfires may be a considerable episodic source of NH3 in the summertime high Arctic. Comparisons of GEOS-Chem model simulations using the Global Fire Assimilation System (GFASv1.2) biomass burning emissions to FTIR measurements and Infrared Atmospheric Sounding Interferometer (IASI) measurements showed that the transport of wildfire emissions to the Arctic was underestimated in GEOS-Chem. However, GEOS-Chem simulations showed that these wildfires contributed to surface-layer NH3 and enhancements of 0.01-0.11 ppbv and 0.05-1.07 ppbv, respectively, over the Canadian Archipelago from 15-23 August 2017

    The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters

    Full text link
    Surveys for exoplanetary transits are usually limited not by photon noise but rather by the amount of red noise in their data. In particular, although the CoRoT spacebased survey data are being carefully scrutinized, significant new sources of systematic noises are still being discovered. Recently, a magnitude-dependant systematic effect was discovered in the CoRoT data by Mazeh & Guterman et al. and a phenomenological correction was proposed. Here we tie the observed effect a particular type of effect, and in the process generalize the popular Sysrem algorithm to include external parameters in a simultaneous solution with the unknown effects. We show that a post-processing scheme based on this algorithm performs well and indeed allows for the detection of new transit-like signals that were not previously detected.Comment: MNRAS accepted. 5 pages, 3 figure

    Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model

    Get PDF
    The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ-free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short-chain fatty acids (SCFAs) in relation to microbial population modulation generated a novel top-down systems biology view of the host response to probiotic intervention. Probiotic exposure exerted microbiome modification and resulted in altered hepatic lipid metabolism coupled with lowered plasma lipoprotein levels and apparent stimulated glycolysis. Probiotic treatments also altered a diverse range of pathways outcomes, including amino-acid metabolism, methylamines and SCFAs. The novel application of hierarchical-principal component analysis allowed visualization of multicompartmental transgenomic metabolic interactions that could also be resolved at the compartment and pathway level. These integrated system investigations demonstrate the potential of metabolic profiling as a top-down systems biology driver for investigating the mechanistic basis of probiotic action and the therapeutic surveillance of the gut microbial activity related to dietary supplementation of probiotics

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015

    Marizomib for patients with newly diagnosed glioblastoma: a randomized phase 3 trial

    Get PDF
    Background: Standard treatment for patients with newly diagnosed glioblastoma includes surgery, radiotherapy (RT) and temozolomide (TMZ) chemotherapy (TMZ/RT→TMZ). The proteasome has long been considered a promising therapeutic target because of its role as a central biological hub in tumor cells. Marizomib is a novel pan-proteasome inhibitor that crosses the blood brain barrier. Methods: EORTC 1709/CCTG CE.8 was a multicenter, randomized, controlled, open label phase 3 superiority trial. Key eligibility criteria included newly diagnosed glioblastoma, age > 18 years and Karnofsky performance status > 70. Patients were randomized in a 1:1 ratio. The primary objective was to compare overall survival (OS) in patients receiving marizomib in addition to TMZ/RT→TMZ with patients receiving only standard treatment in the whole population, and in the subgroup of patients with MGMT promoter-unmethylated tumors. Results: The trial was opened at 82 institutions in Europe, Canada and the US. A total of 749 patients (99.9% of planned 750) were randomized. OS was not different between the standard and the marizomib arm (median 17 vs 16.5 months; HR=1.04; p=0.64). PFS was not statistically different either (median 6.0 vs. 6.3 months; HR=0.97; p=0.67). In patients with MGMT promoter-unmethylated tumors, OS was also not different between standard therapy and marizomib (median 14.5 vs 15.1 months, HR=1.13; p=0.27). More CTCAE grade 3/4 treatment-emergent adverse events were observed in the marizomib arm than in the standard arm. Conclusions: Adding marizomib to standard temozolomide-based radiochemotherapy resulted in more toxicity, but did not improve OS or PFS in patients with newly diagnosed glioblastoma

    International Geomagnetic Reference Field: the 12th generation

    Get PDF
    The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth’s magnetic fiel
    corecore