949 research outputs found

    Global Climate Modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds

    Full text link
    Radiative effects of water ice clouds have noteworthy consequences on the Martian atmosphere, its thermal structure and circulation. Accordingly, the inclusion of such effects in the LMD Mars Global Climate Model (GCM) greatly modifies the simulated Martian water cycle. The intent of this paper is to address the impact of radiatively active clouds on atmospheric water vapor and ice in the GCM and improve its representation. We propose a new enhanced modeling of the water cycle, consisting of detailed cloud microphysics with dynamic condensation nuclei and a better implementation of perennial surface water ice. This physical modeling is based on tunable parameters. This new version of the GCM is compared to the Thermal Emission Spectrometer observations of the water cycle. Satisfying results are reached for both vapor and cloud opacities. However, simulations yield a lack of water vapor in the tropics after Ls=180{\deg} which is persistent in simulations compared to observations, as a consequence of aphelion cloud radiative effects strengthening the Hadley cell. Every year, our GCM simulations indicate that permanent surface water ice on the north polar cap increases at latitudes higher than 80{\deg}N and decreases at lower latitudes. Supersaturation above the hygropause is predicted in line with SPICAM observations. The model also shows for the first time that the scavenging of dust by water ice clouds alone fails to fully account for observed dust detached layers.Comment: 19 pages, 13 figures, submitted to Journal of Geophysical Research (Planets

    A high resolution study of the Martian water cycle with a global climate model

    No full text
    International audienceThe martian water cycle's main source is the northern polar cap. Running high resolution models, up to 360° per 180°, help better resolve this ice cap, and better mimic the gradual retreat of the seasonal cap. Atmospheric circulation is also better resolved. Water vapor advection and the subsequent formation of clouds quite differ when we compare these brand new high resolution simulations and the usual lower resolution ones at 64 per 48 grid points

    A reanalysis of ozone on Mars from assimilation of SPICAM observations

    Get PDF
    We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S–10°S from LS=135–180° and at northern polar (60°N–90°N) latitudes during northern fall (LS=150–195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S–10°S from LS=135–180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall. Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics

    A new Mars Climate Database v5.1

    No full text
    International audienceWhat is the Mars Climate Database? The Mars Climate Database (MCD) is a database of meteorological fields derived from General Circulation Model (GCM) numerical simulations of the Martian atmosphere and validated using available observational data. The MCD includes complementary post-processing schemes such as high spatial resolution interpolation of environmental data and means of reconstructing the variability thereof. The GCM is developed at Laboratoire de MĂ©tĂ©orologie Dynamique du CNRS (Paris, France) [1-3] in collaboration with the Open University (UK), the Oxford University (UK) and the Instituto de Astrofisica de Andalucia (Spain) with support from the European Space Agency (ESA) and the Centre National d'Etudes Spatiales (CNES). The MCD is freely distributed and intended to be useful and used in the framework of engineering applications as well as in the context of scientific studies which require accurate knowledge of the state of the Martian atmosphere. The MCD may be accessed either online (in a somewhat simplified form) via an interactive server available at http://www-mars.lmd.jussieu.fr (useful for moderate needs), or from the complete version which includes advanced access and post-processing software (contact [email protected] and/or [email protected] to obtain a free copy). Overview of MCDv5 contents: The MCD provides mean values and statistics of the main meteorological variables (atmospheric temperature, density, pressure and winds) as well as atmospheric composition (including dust and water vapor and ice content), as the GCM from which the datasets are obtained includes water cycle [4-6], chemistry [7,8], and ionosphere [9,10] models. The database extends up to and including the thermosphere[11-13] (~350km). Since the influence of Extreme Ultra Violet (EUV) input from the sun is significant in the latter, 3 EUV scenarios (solar minimum, average and maximum inputs) account for the impact of the various states of the solar cycle

    Properties of Water Ice and Dust Particles in the Atmosphere of Mars During the 2018 Global Dust Storm as Inferred From the Atmospheric Chemistry Suite

    Get PDF
    The properties of Martian aerosols are an integral part of the planetary climatology. Global dust storms (GDS) significantly alter spatial and vertical distributions of dust and water ice aerosols and their microphysical properties. We explored the 2018/Martian year 34 GDS with the Atmospheric Chemistry Suite instrument onboard the ESA-Roscosmos Trace Gas Orbiter mission. Solar occultation observations of thermal infrared and near infrared channels in the 0.7-6 ÎŒm spectral range with >103 signal-to-noise ratio are used to constrain the vertical dependence and the temporal evolution of the particle properties of water ice and dust (effective radius, effective variance, number density, and mass loading) before the 2018 GDS and during its onset and decay phases. In most of the observations, the particle size of dust and water ice decreases with altitude. The effective radius of dust and water ice particles ranges in 0.1−3.5 ÎŒm and 0.1−5.5 ÎŒm, respectively. The largest aerosol particles (>2.5 ÎŒm for dust and >3.5 ÎŒm for water ice) are present below 10 km before the onset and during the GDS decay phase. During the peak of the GDS, dust reached altitudes of 85 km; the most frequently observed effective radius is 1−2ÎŒm with 0.1−1 cm−3 number density and 0.1 effective variance. Detached layers of water ice composed of 0.1−1 ÎŒm particles are systematically observed at 50−100 km during this period. Below, at 0−50 km, we see the dust mixed with the main water ice layer comprising 1−4 ÎŒm particles.ExoMars is a space mission of ESA and Roscosmos. The ACS experiment is led by IKI, the Space Research Institute in Moscow, assisted by LATMOS in France. The science operations of ACS are funded by Roscosmos and ESA. We are grateful to Michael Wolff, an anonymous reviewer, and Journal of Geophysical Research: Planets editorial board whose comments helped to improve this paper. The early retrievals in 2019 were supported by Ministry of Science and Education of the Russian government. M. Luginin, A. Fedorova, N. Ignatiev, A. Trokhimovskiy, and O. Korablev acknowledge RSF funding of Sections 4 and 5 under grant number 20-42-09035. F. Montmessin acknowl-edges funding from CNES and ANR (PRCI, CE31 AAPG2019)

    Mars Express science highlights and future plans

    Get PDF
    21st EGU General Assembly, EGU2019, proceedings from the conference held 7-12 April, 2019 in Vienna, Austria, id.11100After 15 years in orbit Mars Express remains one of ESA's most scientifically productive Solar System missions whose publication record now exceeds 1200 papers. Characterization of the geological processes on a local-to-regional scale by HRSC, OMEGA and partner experiments on NASA spacecraft has allowed constraining land-forming processes in space and time. Recent results suggest episodic geological activity as well as the presence of large bodies of liquid water in several provinces (e.g. Eridania Planum, Terra Chimeria) in the early and middle Amazonian epoch and formation of vast sedimentary plains north of the Hellas basin. Mars Express observations and experimental teams provided essential contribution to the selection of the Mars-2020 landing sites. Recent discovery of subglacial liquid water underneath the Southern polar cap has proven that the mission science potential is still not exhausted. More than a decade-long record of the atmospheric parameters such as temperature, dust loading, water vapor and ozone abundance, water ice and CO2 clouds distribution, collected by SPICAM, PFS, OMEGA, HRSC and VMC together with subsequent modeling have provided key contributions to our understanding of the martian climate. Recent spectroscopic monitoring of the 2018 dust storm revealed dust properties, their spatial and temporal variations and atmospheric circulation. More than 10,000 crossings of the bow shock by Mars Express allowed ASPERA-3 to characterize complex behavior of the magnetic boundary topology as function of the solar EUV flux. Observations of the ion escape during complete solar cycle revealed important dependencies of the atmospheric erosion rate on parameters of the solar wind and EUV flux and established global energy balance between the solar wind and escaping ion flow. The observations showed that ion escape can be responsible for removal of about 10 mbar over the Mars history that implies existence of other more effective escape channels. The structure of the ionosphere sounded by the MARSIS radar and the MaRS radio science experiment was found to be significantly affected by the solar activity, the crustal magnetic field, as well as by the influx of meteorite and cometary dust. MARSIS and ASPERA-3 observations suggest that the sunlit ionosphere over the regions with strong crustal fields is denser and extends to higher altitudes as compared to the regions with no crustal anomalies. Several models of the upper atmosphere and plasma environment are being developed based on and in support of the collected experimental data. The models aim at creating user-friendly data base of plasma parameters similar to the Mars Climate Database that would be of great service to the planetary community. A significant recent achievement was the flawless transition to the >gyroless> attitude control and operations mode on the spacecraft, that would allow mitigating the onboard gyros aging and extending the mission lifetime. In November 2018 ESA's Science Programme Committee (SPC) confirmed the mission operations till the end of 2020 and notionally approved its extension till the end of 2022. The talk will give the Mars Express status, review the recent science highlights, and outline future plans focusing on synergistic science with TGO

    Mars EXpress: status and recent findings

    Get PDF
    Mars Express has entered its second decade in orbit in excellent health. The mission extension in 2015-2016 aims at augmenting of the surface coverage by imaging and spectral imaging instruments, continuing monitoring of the climate parameters and their variability, study of the upper atmosphere and its interaction with the solar wind in collaboration with NASA's MAVEN mission. Characterization of geological processes and landforms on Mars on a local-to-regional scale by HRSC camera constrained the martian geological activity in space and time and suggested its episodicity. Six years of spectro-imaging observations by OMEGA allowed correction of the surface albedo for presence of the atmospheric dust and revealed changes associated with the dust storm seasons. Imaging and spectral imaging of the surface shed light on past and present aqueous activity and contributed to the selection of the Mars-2018 landing sites. More than a decade long record of climatological parameters such as temperature, dust loading, water vapor, and ozone abundance was established by SPICAM and PFS spectrometers. Observed variations of HDO/H2O ratio above the subliming North polar cap suggested seasonal fractionation. The distribution of aurora was found to be related to the crustal magnetic field. ASPERA observations of ion escape covering a complete solar cycle revealed important dependences of the atmospheric erosion rate on parameters of the solar wind and EUV flux. Structure of the ionosphere sounded by MARSIS radar and MaRS radio science experiment was found to be significantly affected by the solar activity, crustal magnetic field as well as by influx of meteorite and cometary dust. The new atlas of Phobos based on the HRSC imaging was issued. The talk will give the mission status and review recent science highlights

    Photolysis of sulphuric acid as the source of sulphur oxides in the mesosphere of Venus

    Get PDF
    The sulphur cycle plays fundamental roles in the chemistry and climate of Venus. Thermodynamic equilibrium chemistry at the surface of Venus favours the production of carbonyl sulphide and to a lesser extent sulphur dioxide. These gases are transported to the middle atmosphere by the Hadley circulation cell. Above the cloud top, a sulphur oxidation cycle involves conversion of carbonyl sulphide into sulphur dioxide, which is then transported further upwards. A significant fraction of this sulphur dioxide is subsequently oxidized to sulphur trioxide and eventually reacts with water to form sulphuric acid. Because the vapour pressure of sulphuric acid is low, it readily condenses and forms an upper cloud layer at altitudes of 60–70 km, and an upper haze layer above 70 km (ref. 9), which effectively sequesters sulphur oxides from photochemical reactions. Here we present simulations of the fate of sulphuric acid in the Venusian mesosphere based on the Caltech/JPL kinetics model, but including the photolysis of sulphuric acid. Our model suggests that the mixing ratios of sulphur oxides are at least five times higher above 90 km when the photolysis of sulphuric acid is included. Our results are inconsistent with the previous model results but in agreement with the recent observations using ground-based microwave spectroscopy and by Venus Express
    • 

    corecore